Format

Send to

Choose Destination
Neurol Genet. 2019 May 2;5(3):e337. doi: 10.1212/NXG.0000000000000337. eCollection 2019 Jun.

Novel mutation in TNPO3 causes congenital limb-girdle myopathy with slow progression.

Author information

1
Folkhälsan Institute of Genetics and Department of Medical Genetics (A.V.), Medicum, University of Helsinki; Neuromuscular Research Center (J.P.), Tampere University and University Hospital of Tampere, Finland; Neuromuscular Unit (O.D.), Division of Neurology, Department of Clinical and Experimental Medicine, Linköping University, Sweden; Neuromuscular Research Center (S. Penttilä), Tampere University and University Hospital of Tampere, Finland; Department of Neurology (D.L.), Department of Neurology (S. Pittman), Department of Neurology (C.W.), Washington University School of Medicine, Saint Louis, MO; Folkhälsan Institute of Genetics and Department of Medical Genetics (B.U.), Medicum, University of Helsinki; Neuromuscular Research Center (B.U.), Tampere University and University Hospital of Tampere; and Department of Neurology (B.U.), Vaasa Central Hospital, Vaasa, Finland.

Abstract

Objective:

We report a second family with autosomal dominant transportinopathy presenting with congenital or early-onset myopathy and slow progression, causing proximal and less pronounced distal muscle weakness.

Methods:

Patients had clinical examinations, muscle MRI, EMG, and muscle biopsy studies. The MYOcap gene panel was used to identify the gene defect in the family. Muscle biopsies were used for histopathologic and protein expression studies, and TNPO3 constructs were used to study the effect of the mutations in transfected cells.

Results:

We identified a novel heterozygous mutation, c.2757delC, in the last part of the transportin-3 (TNPO3) gene in the affected family members. The mutation causes an almost identical frameshift affecting the stop codon and elongating the C-term protein product of the TNPO3 transcript, as was previously reported in the first large Spanish-Italian LGMD1F kindred. TNPO3 protein was increased in the patient muscle and accumulated in the subsarcolemmal and perinuclear areas. At least one of the cargo proteins, the splicing factor SRRM2 was normally located in the nucleus. Transiently transfected mutant TNPO3 constructs failed to localize to cytoplasmic annulate lamellae pore complexes in cells.

Conclusions:

We report the clinical, molecular genetic, and histopathologic features of the second transportinopathy family. The variability of the clinical phenotype together with histopathologic findings suggests that several molecular pathways may be involved in the disease pathomechanism, such as nucleocytoplasmic shuttling, protein aggregation, and defective protein turnover.

Supplemental Content

Full text links

Icon for PubMed Central
Loading ...
Support Center