Format

Send to

Choose Destination
ACS Appl Mater Interfaces. 2019 Jun 26;11(25):22171-22180. doi: 10.1021/acsami.9b05827. Epub 2019 Jun 13.

Small, Traceable, Endosome-Disrupting, and Bioresponsive Click Nanogels Fabricated via Microfluidics for CD44-Targeted Cytoplasmic Delivery of Therapeutic Proteins.

Author information

1
Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection , Soochow University , Suzhou 215123 , China.
2
School of Radiation Medicine and Protection and School for Radiological and Interdisciplinary Sciences , Medical College of Soochow University , Suzhou 215123 , China.

Abstract

Nanogels (NG) are among the most ideal cytoplasmic protein delivery vehicles; however, their performance is suboptimal, partly owing to relatively big size, poor cell uptake, and endosomal entrapment. Here, we developed small, traceable, endosome-disrupting, and bioresponsive hyaluronic acid NG (HA-NG) for CD44-targeted intracellular delivery of therapeutic proteins. With microfluidics and catalyst-free photo-click cross-linking, HA-NG with hydrodynamic diameters of ca. 80 and 150 nm, strong green fluorescence and efficient loading of various proteins including saporin (Sap), cytochrome C, herceptin, immunoglobulin G (IgG), and bovine serum albumin could be fabricated. Interestingly, 80 nm-sized HA-NG revealed clearly better cellular uptake than its 150 nm counterparts in both CD44-negative U87 cancer cells and CD44-positive 4T1 and MDA-MB-231 cells. Moreover, small NG exhibited accelerated endosomal escape, which was further boosted by introducing GALA, a pH-sensitive fusogenic peptide. Accordingly, Sap-loaded small and GALA-functionalized HA-NG showed the highest cytotoxicity in CD44-positive MDA-MB-231, 4T1, A549, and SMMC-7721 cancer cells. The biodistribution studies demonstrated that 80 nm-sized HA-NG displayed significantly greater tumor uptake as well as penetration in MDA-MB-231 human breast tumor xenografts than its 150 nm counterparts, whereas the introduction of GALA had no detrimental effect on tumor accumulation. Small, endosome-disrupting, and bioresponsive HA-NG with easy and controlled fabrication hold a great potential for targeted protein therapy.

KEYWORDS:

cancer therapy; click reaction; endosomal escape; microfluidics; nanogels; protein delivery

PMID:
31190543
DOI:
10.1021/acsami.9b05827

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center