Format

Send to

Choose Destination
Infect Immun. 1987 Nov;55(11):2822-9.

In vitro model of penetration and intracellular growth of Listeria monocytogenes in the human enterocyte-like cell line Caco-2.

Author information

1
Laboratoire de Microbiologie, Faculté de Médecine Necker Enfants Malades, Paris, France.

Abstract

Penetration and replication of Listeria monocytogenes within intestinal epithelial cells were studied by infecting the human enterocyte-like cell line Caco-2. Entry was due to directed phagocytosis, as suggested by the inhibiting effect of cytochalasin D on bacterial entry and by electron microscopy showing bacteria inside membrane-limiting vacuoles at the early stage of infection. Only bacteria from pathogenic species (L. monocytogenes and Listeria ivanovii) were able to induce their own phagocytosis by Caco-2 cells, as opposed to Listeria seeligeri, Listeria welshimeri, and Listeria innocua. L. monocytogenes multiplied readily within Caco-2 cells, with an apparent generation time of about 90 min. Listeriolysin O was found to be a major factor promoting intracellular growth of L. monocytogenes. After being internalized at the same rate as that of its hemolytic revertant strain, a nonhemolytic mutant from L. monocytogenes failed to replicate significantly within Caco-2 cells. Electron microscopic study demonstrated that bacteria from the nonhemolytic mutant remained inside phagosomes during cellular infection, whereas hemolytic bacteria from L. monocytogenes were released free within the cytoplasm. This indicates that disruption of vacuole membranes by listeriolysin O-producing strains of L. monocytogenes might be a key mechanism allowing bacteria to escape from phagosomes and to multiply unrestricted within cell cytoplasm.

PMID:
3117693
PMCID:
PMC259983
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center