Format

Send to

Choose Destination
J Neurochem. 2019 Jun 5. doi: 10.1111/jnc.14788. [Epub ahead of print]

Down-regulation of interleukin-33 expression in oligodendrocyte precursor cells impairs oligodendrocyte lineage progression.

Author information

1
Department of Life Sciences, College of Biological Science and Biotechnology, National Cheng Kung University, Tainan, Taiwan.
2
Institute for Translational Research in Biomedicine, Chang Gung Memorial Hospital, Kaohsiung, Taiwan.

Abstract

Interleukin-33 (IL-33), a member of the IL1 family, has been found to be expressed in oligodendrocytes (OLGs) and released as an alarmin from injured OLGs to work on other glial cell-types in the central nervous system. However, its functional role in OLGs remains unclear. Herein, we present that IL-33 was mainly expressed in the nucleus of CC1+ -oligodendrocytes (OLGs) in mouse and rat corpus callosum, as well as NG2+ -oligodendrocyte precursor cells (OPCs). The in vitro study indicated that the amount of IL-33 expressing in OPCs was higher when compared to that detected in OLGs. Results from the experiments using lentivirus-mediated shRNA delivery against IL-33 expression (IL33-KD) in OPCs showed that IL33-KD reduced the differentiation of OLGs into mature OLGs along with the down-regulation of OLG differentiation-related genes and mature OLG marker proteins, myelin basic protein (MBP) and proteolipid protein (PLP). Alternatively, we observed reduced differentiation of OLGs that were prepared from the brains of IL-33 gene knockout (IL33-KO) mice with anxiolytic-like behavior. Observations were correlated with the results showing lower levels of MBP and PLP in IL33-KO cultures than those detected in the control cultures prepared from wildtype (WT) mice. Transmission Electron Microscopy (TEM) analysis revealed that the myelin structures in the corpus callosum of the IL33-KO mice were impaired compared to those observed in the WT mice. Overall, this study provides important evidence that declined expression of IL-33 in OPCs suppresses the maturation of OLGs. Moreover, gene deficiency of IL-33 can disrupt OLG maturation and interfere with myelin compaction. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/. Open Science: This manuscript was awarded with the Open Materials Badge For more information see: https://cos.io/our-services/open-science-badges/.

KEYWORDS:

Interleukin-33; OPCs; myelin protein; oligodendrocytes

PMID:
31165473
DOI:
10.1111/jnc.14788

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center