Format

Send to

Choose Destination
See comment in PubMed Commons below
Mutat Res. 1987 Oct;180(2):189-200.

Somatic cell mutagenicity in Drosophila melanogaster in comparison with genetic damage in early germ-cell stages.

Author information

1
Department of Radiation Genetics and Chemical Mutagenesis, Sylvius Laboratories, State University of Leiden, The Netherlands.

Abstract

With the intention of assessing the general performance, sensitivity and the underlying mechanisms of somatic cell mutagenicity assays in Drosophila, a study was undertaken to compare the effectiveness of 5 procarcinogens and 4 direct-acting agents in the white/white-coral eye mosaic assay (SMART) with their activity in early (premeiotic) male and female germ-cell stages, after exposure of Drosophila larvae. The outcome indicated a lack of agreement in the results from recessive lethal assays (SLRL) in comparison with the somatic mutation and recombination test (SMART). The procarcinogens 2-naphthylamine (NA), 3-methylcholanthrene (MC), 9,10-dimethylanthracene (DA) and 7,12-dimethylbenz[a]anthracene (DMBA), and the direct-acting mutagens bleomycin (BM), methyl methanesulfonate (MMS) and ethyl methanesulfonate (EMS), were quite efficient in producing somatic recombination and mutations in white/white-coral larvae, as opposed to only weak effects in early germ-cell stages. 2-Acetylaminofluorene (2AAF) showed marginal effects in both germ cells and somatic tissue after exposure of female larvae, but was inactive in testis. The discrepancy in mutational response between somatic cells and premeiotic germ cells is most impressive for MMS and BM. There is sufficient evidence for attributing a good sized proportion of the encountered variation to efficient error-free DNA repair of premutational damage and to segregational elimination during meiosis of deleterious mutations: (1) The efficient point mutagen ENU was the but one agent producing high levels of viable genetic alterations in early germ cells and in somatic cells. A similar behaviour was previously described for diethylnitrosamine, which ethylates DNA in the same fashion as ENU. (2) In early germ-cell stages of mei-9L1 male larvae, MMS induced multiple mutations (putative clusters) at a low dose differing by a factor 20-40 from those needed to produce an equivalent response in repair-competent strains. This is consistent with the concept of an active excision repair in premeiotic cells. (3) In the case of EMS, next to DNA repair, germinal selection seems to restrict the realization of EMS-induced genetic damage in premeiotic cells. (4) Bleomycin-induced chromosome aberrations caused high mortality rates in males (hemizygous for an X-chromosome) but not in females. MMS and BM, agents known to show preference for chromosome aberration induction, produced 3-6-fold higher rates of somatic mutational events (SME) in female genotypes as compared with the other sex.(ABSTRACT TRUNCATED AT 400 WORDS)

PMID:
3116419
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center