Format

Send to

Choose Destination
Neuron. 2019 Jul 17;103(2):309-322.e7. doi: 10.1016/j.neuron.2019.04.035. Epub 2019 May 28.

Thermoregulation via Temperature-Dependent PGD2 Production in Mouse Preoptic Area.

Author information

1
Departments of Physiology, Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA.
2
Departments of Physiology, Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA.
3
Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA; UCSF Diabetes Center, University of California, San Francisco, San Francisco, CA 94158, USA.
4
Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94158, USA.
5
Departments of Physiology, Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA. Electronic address: lily.jan@ucsf.edu.

Abstract

Body temperature control is essential for survival. In mammals, thermoregulation is mediated by the preoptic area of anterior hypothalamus (POA), with ∼30% of its neurons sensitive to brain temperature change. It is still unknown whether and how these temperature-sensitive neurons are involved in thermoregulation, because for eight decades they have only been identified via electrophysiological recording. By combining single-cell RNA-seq with whole-cell patch-clamp recordings, we identified Ptgds as a genetic marker for temperature-sensitive POA neurons. Then, we demonstrated these neurons' role in thermoregulation via chemogenetics. Given that Ptgds encodes the enzyme that synthesizes prostaglandin D2 (PGD2), we further explored its role in thermoregulation. Our study revealed that rising temperature of POA alters the activity of Ptgds-expressing neurons so as to increase PGD2 production. PGD2 activates its receptor DP1 and excites downstream neurons in the ventral medial preoptic area (vMPO) that mediates body temperature decrease, a negative feedback loop for thermoregulation.

PMID:
31151773
PMCID:
PMC6639135
[Available on 2020-07-17]
DOI:
10.1016/j.neuron.2019.04.035

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center