Send to

Choose Destination
Am J Pathol. 1987 Sep;128(3):471-83.

C5a-induced hemodynamic and hematologic changes in the rabbit. Role of cyclooxygenase products and polymorphonuclear leukocytes.


Hemodynamic and hematologic changes occurring after intravascular complement activation have implicated the anaphylatoxins in this response. In this study, the hemodynamic and hematologic effects of purified C5a were investigated in rabbits; and involvement of prostanoids, histamine, and polymorphonuclear leukocytes (PMNs) were examined. The anaphylatoxin C5a induces a reversible systemic arterial hypotension which coincides with an increase in central venous pressure (CVP), decreased cardiac output (CO), increased plasma prostanoid levels, as well as neutropenia. Total peripheral resistance (TPR) remained unchanged. The cyclooxygenase inhibitor indomethacin abolished the C5a-induced hypotension and normalized plasma prostanoid levels without altering the C5a-induced neutropenia. The thromboxane (Tx) A2 synthetase inhibitor dazoxiben reduced TxB2 plasma levels and increased 6-keto-prostaglandin PGF1 alpha and PGE2 levels without altering the hypotensive response. However, with dazoxiben treatment both TPR and CVP decreased. The H2-receptor antagonist cimetidine reduced C5a-induced hypotension and diminished prostanoid release. Both the hypotensive response and elevated prostanoid release were observed after C5a challenge in animals rendered neutropenic prior to challenge. It is concluded that C5a-induced arterial hypotension in the rabbit is a PMN-independent reaction, mediated through cyclooxygenase products and, to some degree, by histamine. The mechanism producing systemic arterial hypotension does not seem to involve peripheral vasodilation but appears to be a secondary effect of pulmonary vasoconstriction, possibly mediated by TxA2.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for PubMed Central
Loading ...
Support Center