Format

Send to

Choose Destination
Cell. 2019 May 30;177(6):1536-1552.e23. doi: 10.1016/j.cell.2019.05.008.

CerS6-Derived Sphingolipids Interact with Mff and Promote Mitochondrial Fragmentation in Obesity.

Author information

1
Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany; Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Strasse 26, 50924 Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne.
2
Heidelberg University Biochemistry Center, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany.
3
Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne; Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9B, 50931 Cologne, Germany.
4
Heidelberg University Biochemistry Center, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany; Current address: Lipotype GmbH, Tatzberg 47, 01307 Dresden, Germany.
5
Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne.
6
Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany; Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Strasse 26, 50924 Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne; National Center for Diabetes Research (DZD), Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany. Electronic address: bruening@sf.mpg.de.

Abstract

Ectopic lipid deposition and altered mitochondrial dynamics contribute to the development of obesity and insulin resistance. However, the mechanistic link between these processes remained unclear. Here we demonstrate that the C16:0 sphingolipid synthesizing ceramide synthases, CerS5 and CerS6, affect distinct sphingolipid pools and that abrogation of CerS6 but not of CerS5 protects from obesity and insulin resistance. We identify proteins that specifically interact with C16:0 sphingolipids derived from CerS5 or CerS6. Here, only CerS6-derived C16:0 sphingolipids bind the mitochondrial fission factor (Mff). CerS6 and Mff deficiency protect from fatty acid-induced mitochondrial fragmentation in vitro, and the two proteins genetically interact in vivo in obesity-induced mitochondrial fragmentation and development of insulin resistance. Our experiments reveal an unprecedented specificity of sphingolipid signaling depending on specific synthesizing enzymes, provide a mechanistic link between hepatic lipid deposition and mitochondrial fragmentation in obesity, and define the CerS6-derived sphingolipid/Mff interaction as a therapeutic target for metabolic diseases.

PMID:
31150623
DOI:
10.1016/j.cell.2019.05.008
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center