Send to

Choose Destination
Rejuvenation Res. 2019 May 29. doi: 10.1089/rej.2019.2218. [Epub ahead of print]

Interacting NAD+ and Cell Senescence pathways complicate anti-aging therapies.

Author information

Panorama Research Institute , 1230 Bordeaux Dr , Sunnyvale, California, United States , 94089.
Regenerative Sciences Institute , 1230 Bordeaux Dr , Sunnyvale, California, United States , 94089 ;
Panorama Research Institute , 1230 Bordeaux Drive , Sunnyvale, California, United States , 94089 ;


During human aging, decrease of NAD+ levels is associated with potentially reversible dysfunction in the liver, kidney, skeletal and cardiac muscle, endothelial cells and neurons. At the same time, the number of senescent cells, associated with damage or stress that secrete pro-inflammatory factors (SASP, Senescence-Associated Secretory Phenotype), increases with age in many key tissues, including the kidneys, lungs, blood vessels, and brain. Senescent cells are believed to contribute to numerous age-associated pathologies and their elimination by senolytic regimens appears to help in numerous preclinical aging-associated disease models including those for atherosclerosis, idiopathic pulmonary fibrosis, diabetes, and osteoarthritis. A recent report links these processes, such that decreased NAD+ levels associated with aging may attenuate the SASP phenotype potentially reducing its pathological effect. Conversely increasing NAD+ levels by supplementation or genetic manipulation which may benefit tissue homeostasis, also may worsen SASP and encourage tumorigenesis at least in mouse models of cancer. Taken together these findings suggest a fundamental trade-off in treating aging related diseases with drugs or supplements that increase NAD+. Even more interesting is a report that senescent cells can induce CD38 on macrophages and endothelial cells. In turn increased CD38 expression is believed to be the key modulator of lowered NAD+ levels with aging in mammals. So accumulation of senescent cells may itself be a root cause of decreased NAD+, which in turn could promote dysfunction. On the other hand, the lower NAD+ levels may attenuate SASP, decreasing the pathological influence of senescence. The elimination of most senescent cells by senolysis before initiating NAD+ therapies may be beneficial and increase safety, and in the best case scenario even eliminate the need for NAD+ supplementation.


Supplemental Content

Full text links

Icon for Atypon
Loading ...
Support Center