MR molecular imaging of HCC employing a regulated ferritin gene carried by a modified polycation vector

Int J Nanomedicine. 2019 May 2:14:3189-3201. doi: 10.2147/IJN.S191270. eCollection 2019.

Abstract

Purpose: Early diagnosis is essential for reducing liver cancer mortality, and molecular diagnosis by magnetic resonance imaging (MRI) is an emerging and promising technology. The chief aim of the present work is to use the ferritin gene, modified by the alpha-fetoprotein (AFP) promoter, carried by a highly safe vector, to produce signal contrast on T2-weighted MR imaging as an endogenous contrast agent, and to provide a highly specific target for subsequent therapy. Methods: Polyethyleneimine-β-cyclodextrin (PEI-β-CD, PC) was synthesized as a novel vector. The optimal nitrogen/phosphorus ratio (N/P) of the PC/plasmid DNA complex was determined by gel retardation, biophysical properties and transmission electron microscopy morphological analysis. The transfection efficiency was observed under a fluorescence microscope and analyzed by flow cytometry. Cellular iron accumulation caused by ferritin overexpression was verified by Prussian blue staining, and the resulting contrast imaging effect was examined by MRI. Results: The modified cationic polymer PC was much safer than high molecular weight PEI, and could condense plasmid DNA at an N/P ratio of 50 with suitable biophysical properties and a high transfection efficiency. Overexpression of ferritin enriched intracellular iron. The short-term iron imbalance initiated by AFP promoter regulation only occurred in hepatoma cells, resulting in signal contrast on MRI. The specific target TfR was also upregulated during this process. Conclusion: These results illustrate that the regulated ferritin gene carried by PC can be used as an endogenous contrast agent for MRI detection of hepatocellular carcinoma (HCC). This molecular imaging technique may promote safer early diagnosis of HCC, and provide a more highly specific target for future chemotherapy drugs.

Keywords: AFP promoter; ferritin; hepatocellular carcinoma; magnetic resonance imaging; molecular imaging.

MeSH terms

  • Carcinoma, Hepatocellular / diagnostic imaging*
  • Carcinoma, Hepatocellular / pathology
  • Cell Death
  • Cell Line, Tumor
  • DNA / metabolism
  • Ferritins / genetics*
  • HEK293 Cells
  • Humans
  • Iron / metabolism
  • Liver Neoplasms / diagnostic imaging*
  • Liver Neoplasms / pathology
  • Magnetic Resonance Imaging*
  • Molecular Imaging / methods*
  • Particle Size
  • Plasmids / metabolism
  • Polyamines / chemistry*
  • Polyelectrolytes
  • Polyethyleneimine / chemistry
  • Promoter Regions, Genetic
  • Proton Magnetic Resonance Spectroscopy
  • Receptors, Transferrin / metabolism
  • Static Electricity

Substances

  • Polyamines
  • Polyelectrolytes
  • Receptors, Transferrin
  • polycations
  • Polyethyleneimine
  • DNA
  • Ferritins
  • Iron