Format

Send to

Choose Destination
Environ Pollut. 2019 Aug;251:609-618. doi: 10.1016/j.envpol.2019.05.048. Epub 2019 May 11.

Semi-volatile organic compounds in infant homes: Levels, influence factors, partitioning, and implications for human exposure.

Author information

1
International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China; University Corporation for Polar Research, Beijing, 100875, PR China.
2
International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China; University Corporation for Polar Research, Beijing, 100875, PR China. Electronic address: llyan7664@163.com.
3
International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China; University Corporation for Polar Research, Beijing, 100875, PR China; IJRC-PTS-NA & IJRC-AEE-NA, Toronto, Ontario, M2N 6X9, Canada.
4
International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), College of Agricultural Resource and Environment, Heilongjiang University, Harbin 150080, PR China.

Abstract

While infants are developing, they are easily affected by toxic chemicals existing in their environments, such as semi-volatile organic compounds (SVOCs): phthalates, polycyclic aromatic hydrocarbons (PAHs), polybrominated diphenyl ethers (PBDEs), and organophosphate esters (OPEs). However, the specific living environment of infants, including increased plastic products and foam floor mats, may increase the presence of these chemicals. In this study, 68 air, dust, and window film samples were collected from homes, with 3- to 6-month-old infant occupants, to analyze phthalates, PAHs, PBDEs, and OPEs. High detection rates and concentrations suggest that these SVOCs are widespread in infant environments and are associated with cooking methods, smoking habits, the period of time after decoration, and room floors. The partitioning behavior of SVOCs indicates that the logarithms of the dust/gas-phase air partition coefficient (logKD) and the window film/gas-phase air partition coefficient (logKF) in homes are not at an equilibrium state when the logarithm of the octanol/air partition coefficient (logKOA) is less than 8 or greater than 11. Considering the 3 exposure routes, ingestion and dermal absorption have become the main routes of infant exposure to phthalates and OPEs, and ingestion and inhalation have become the dominant routes of exposure to PAHs and PBDEs. The total carcinogenic risk of SVOCs, which have carcinogenic toxicities, via ingestion and dermal absorption for infants in homes exceeds the acceptable value, suggesting that the current levels of these SVOCs in homes might pose a risk to infant health.

KEYWORDS:

Air; Carcinogenic risk; Dust; Infants; Window film

PMID:
31108294
DOI:
10.1016/j.envpol.2019.05.048
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center