Format

Send to

Choose Destination
Nature. 2019 May;569(7756):404-408. doi: 10.1038/s41586-019-1128-0. Epub 2019 May 15.

Climatic controls of decomposition drive the global biogeography of forest-tree symbioses.

Collaborators (207)

Abegg M, Adou Yao CY, Alberti G, Almeyda Zambrano A, Alvarez-Davila E, Alvarez-Loayza P, Alves LF, Ammer C, Antón-Fernández C, Araujo-Murakami A, Arroyo L, Avitabile V, Aymard G, Baker T, Bałazy R, Banki O, Barroso J, Bastian M, Bastin JF, Birigazzi L, Birnbaum P, Bitariho R, Boeckx P, Bongers F, Bouriaud O, Brancalion PHS, Brandl S, Brearley FQ, Brienen R, Broadbent E, Bruelheide H, Bussotti F, Cazzolla Gatti R, Cesar R, Cesljar G, Chazdon R, Chen HYH, Chisholm C, Cienciala E, Clark CJ, Clark D, Colletta G, Condit R, Coomes D, Cornejo Valverde F, Corral-Rivas JJ, Crim P, Cumming J, Dayanandan S, de Gasper AL, Decuyper M, Derroire G, DeVries B, Djordjevic I, Iêda A, Dourdain A, Obiang NLE, Enquist B, Eyre T, Fandohan AB, Fayle TM, Feldpausch TR, Finér L, Fischer M, Fletcher C, Fridman J, Frizzera L, Gamarra JGP, Gianelle D, Glick HB, Harris D, Hector A, Hemp A, Hengeveld G, Herbohn J, Herold M, Hillers A, Honorio Coronado EN, Huber M, Hui C, Cho H, Ibanez T, Jung I, Imai N, Jagodzinski AM, Jaroszewicz B, Johannsen V, Joly CA, Jucker T, Karminov V, Kartawinata K, Kearsley E, Kenfack D, Kennard D, Kepfer-Rojas S, Keppel G, Khan ML, Killeen T, Kim HS, Kitayama K, Köhl M, Korjus H, Kraxner F, Laarmann D, Lang M, Lewis S, Lu H, Lukina N, Maitner B, Malhi Y, Marcon E, Marimon BS, Marimon-Junior BH, Marshall AR, Martin E, Martynenko O, Meave JA, Melo-Cruz O, Mendoza C, Merow C, Monteagudo Mendoza A, Moreno V, Mukul SA, Mundhenk P, Nava-Miranda MG, Neill D, Neldner V, Nevenic R, Ngugi M, Niklaus P, Oleksyn J, Ontikov P, Ortiz-Malavasi E, Pan Y, Paquette A, Parada-Gutierrez A, Parfenova E, Park M, Parren M, Parthasarathy N, Peri PL, Pfautsch S, Phillips O, Piedade MT, Piotto D, Pitman NCA, Polo I, Poorter L, Poulsen AD, Poulsen JR, Pretzsch H, Ramirez Arevalo F, Restrepo-Correa Z, Rodeghiero M, Rolim S, Roopsind A, Rovero F, Rutishauser E, Saikia P, Saner P, Schall P, Schelhaas MJ, Schepaschenko D, Scherer-Lorenzen M, Schmid B, Schöngart J, Searle E, Seben V, Serra-Diaz JM, Salas-Eljatib C, Sheil D, Shvidenko A, Silva-Espejo J, Silveira M, Singh J, Sist P, Slik F, Sonké B, Souza AF, Stereńczak K, Svenning JC, Svoboda M, Targhetta N, Tchebakova N, Steege HT, Thomas R, Tikhonova E, Umunay P, Usoltsev V, Valladares F, van der Plas F, Van Do T, Vasquez Martinez R, Verbeeck H, Viana H, Vieira S, von Gadow K, Wang HF, Watson J, Westerlund B, Wiser S, Wittmann F, Wortel V, Zagt R, Zawila-Niedzwiecki T, Zhu ZX, Zo-Bi IC.

Author information

1
Department of Biology, Stanford University, Stanford, CA, USA.
2
Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland. tom.crowther@usys.ethz.ch.
3
Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA. albeca.liang@gmail.com.
4
Research Center of Forest Management Engineering of State Forestry and Grassland Administration, Beijing Forestry University, Beijing, China. albeca.liang@gmail.com.
5
Department of Zoology, University of Oxford, Oxford, UK.
6
Department of Forest Resources, University of Minnesota, St Paul, MN, USA.
7
Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia.
8
Wageningen University and Research, Wageningen, The Netherlands.
9
Forest Ecology and Forest Management Group, Wageningen University and Research, Wageningen, The Netherlands.
10
Department of Crop and Forest Sciences - Agrotecnio Center (UdL-Agrotecnio), Universitat de Lleida, Lleida, Spain.
11
Forest Science and Technology Centre of Catalonia (CTFC), Solsona, Spain.
12
Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA.
13
Food and Agriculture Organization of the United Nations, Rome, Italy.
14
Cirad, UPR Forêts et Sociétés, University of Montpellier, Montpellier, France.
15
Department of Forestry and Environment, National Polytechnic Institute (INP-HB), Yamoussoukro, Côte d'Ivoire.
16
Research Center of Forest Management Engineering of State Forestry and Grassland Administration, Beijing Forestry University, Beijing, China.
17
Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland.
18
Department of Biology, Stanford University, Stanford, CA, USA. kpeay@stanford.edu.

Abstract

The identity of the dominant root-associated microbial symbionts in a forest determines the ability of trees to access limiting nutrients from atmospheric or soil pools1,2, sequester carbon3,4 and withstand the effects of climate change5,6. Characterizing the global distribution of these symbioses and identifying the factors that control this distribution are thus integral to understanding the present and future functioning of forest ecosystems. Here we generate a spatially explicit global map of the symbiotic status of forests, using a database of over 1.1 million forest inventory plots that collectively contain over 28,000 tree species. Our analyses indicate that climate variables-in particular, climatically controlled variation in the rate of decomposition-are the primary drivers of the global distribution of major symbioses. We estimate that ectomycorrhizal trees, which represent only 2% of all plant species7, constitute approximately 60% of tree stems on Earth. Ectomycorrhizal symbiosis dominates forests in which seasonally cold and dry climates inhibit decomposition, and is the predominant form of symbiosis at high latitudes and elevation. By contrast, arbuscular mycorrhizal trees dominate in aseasonal, warm tropical forests, and occur with ectomycorrhizal trees in temperate biomes in which seasonally warm-and-wet climates enhance decomposition. Continental transitions between forests dominated by ectomycorrhizal or arbuscular mycorrhizal trees occur relatively abruptly along climate-driven decomposition gradients; these transitions are probably caused by positive feedback effects between plants and microorganisms. Symbiotic nitrogen fixers-which are insensitive to climatic controls on decomposition (compared with mycorrhizal fungi)-are most abundant in arid biomes with alkaline soils and high maximum temperatures. The climatically driven global symbiosis gradient that we document provides a spatially explicit quantitative understanding of microbial symbioses at the global scale, and demonstrates the critical role of microbial mutualisms in shaping the distribution of plant species.

PMID:
31092941
DOI:
10.1038/s41586-019-1128-0
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Nature Publishing Group
Loading ...
Support Center