Format

Send to

Choose Destination
Dev Biol. 2019 May 6. pii: S0012-1606(19)30075-2. doi: 10.1016/j.ydbio.2019.04.016. [Epub ahead of print]

Loss of Shh signaling in the neocortex reveals heterogeneous cell recovery responses from distinct oligodendrocyte populations.

Author information

1
Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, 80045, USA; Cell Biology, Stem Cells and Development Graduate Program, University of Colorado School of Medicine, Aurora, CO, 80045, USA.
2
Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, 80045, USA; Cell Biology, Stem Cells and Development Graduate Program, University of Colorado School of Medicine, Aurora, CO, 80045, USA; Program of Pediatric Stem Cell Biology, Children's Hospital Colorado, Aurora, CO, 80045, USA. Electronic address: santos.franco@ucdenver.edu.

Abstract

The majority of oligodendrocytes in the neocortex originate from neural progenitors that reside in the dorsal forebrain. We recently showed that Sonic Hedgehog (Shh) signaling in these dorsal progenitors is required to produce normal numbers of neocortical oligodendrocytes during embryonic development. Conditional deletion of the Shh signaling effector, Smo, in dorsal progenitors caused a dramatic reduction in oligodendrocyte numbers in the embryonic neocortex. In the current study, we show that the depleted oligodendrocyte lineage in Smo conditional mutants is able to recover to control numbers over time. This eventual recovery is achieved in part by expansion of the ventrally-derived wild-type lineage that normally makes up a minority of the total oligodendrocyte population. However, we find that the remaining dorsally-derived mutant cells also increase in numbers over time to contribute equally to the recovery of the total population. Additionally, we found that the ways in which the dorsal and ventral sources cooperate to achieve recovery is different for distinct populations of oligodendrocyte-lineage cells. Oligodendrocyte precursor cells (OPCs) in the neocortical white matter recover completely by expansion of the remaining dorsally-derived Smo mutant cells. On the other hand, mature oligodendrocytes in the white and gray matter recover through an equal contribution from dorsal mutant and ventral wild-type lineages. Interestingly, the only population that did not make a full recovery was OPCs in the gray matter. We find that gray matter OPCs are less proliferative in Smo cKO mutants compared to controls, which may explain their inability to fully recover. Our data indicate that certain populations of the dorsal oligodendrocyte lineage are more affected by loss of Shh signaling than others. Furthermore, these studies shed new light on the complex relationship between dorsal and ventral sources of oligodendrocytes in the developing neocortex.

KEYWORDS:

Cerebral cortex; Development; Forebrain; Glia; Neocortex; OPC; Oligodendrocyte; Sonic hedgehog

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center