Format

Send to

Choose Destination
BMB Rep. 2019 May;52(5):336-341.

Induction of pro-inflammatory cytokines by 29-kDa FN-f via cGAS/STING pathway.

Author information

1
Division of Rheumatology, Department of Internal Medicine, Hallym University Sacred Heart Hospital, Anyang 14068; Institute for Skeletal Aging, Hallym University, Chunchon 24251, Korea.

Abstract

The cGAS-STING pathway plays an important role in pathogen-induced activation of the innate immune response. The 29-kDa amino-terminal fibronectin fragment (29-kDa FN-f) found predominantly in the synovial fluid of osteoarthritis (OA) patients increases the expression of catabolic factors via the toll-like receptor-2 (TLR-2) signaling pathway. In this study, we investigated whether 29-kDa FN-f induces inflammatory responses via the cyclic GMP-AMP synthase (cGAS)/stimulator of interferon gene (STING) pathway in human primary chondrocytes. The levels of cGAS and STING were elevated in OA cartilage compared with normal cartilage. Long-term treatment of chondrocytes with 29-kDa FN-f activated the cGAS/STING pathway together with the increased level of gamma-H2AX, a marker of DNA breaks. In addition, the expression of pro-inflammatory cytokines, including granulocytemacrophage colony-stimulating factor (GM-CSF/CSF-2), granulocyte colony-stimulating factor (G-CSF/CSF-3), and type I interferon (IFN-α), was increased more than 100-fold in 29-kDa FN-f-treated chondrocytes. However, knockdown of cGAS and STING suppressed 29-kDa FN-f-induced expression of GM-CSF, G-CSF, and IFN-α together with the decreased activation of TANK-binding kinase 1 (TBK1), interferon regulatory factor 3 (IRF3), and inhibitor protein κBα (IκBα). Furthermore, NOD2 or TLR-2 knockdown suppressed the expression of GM-CSF, G-CSF, and IFN-α as well as decreased the activation of the cGAS/STING pathway in 29-kDa FN-f-treated chondrocytes. These data demonstrate that the cGAS/STING/TBK1/IRF3 pathway plays a critical role in 29-kDa FN-f-induced expression of pro-inflammatory cytokines. [BMB Reports 2019; 52(5): 336-341].

PMID:
31068249
PMCID:
PMC6549918

Supplemental Content

Full text links

Icon for Korean Society for Biochemistry and Molecular Biology Icon for PubMed Central
Loading ...
Support Center