Format

Send to

Choose Destination
Mol Biol Cell. 2019 Jul 1;30(14):1757-1769. doi: 10.1091/mbc.E19-03-0164. Epub 2019 May 8.

Sexual dimorphism of niche architecture and regulation of the Caenorhabditis elegans germline stem cell pool.

Author information

1
Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, WI 53706.
2
Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706.

Abstract

Stem cell maintenance by niche signaling is a common theme across phylogeny. In the Caenorhabditis elegans gonad, the broad outlines of germline stem cell (GSC) regulation are the same for both sexes: GLP-1/Notch signaling from the mesenchymal distal tip cell niche maintains GSCs in the distal gonad of both sexes and does so via two key stem cell regulators, SYGL-1 and LST-1. Yet most recent analyses of niche signaling and GSC regulation have focused on XX hermaphrodites, an essentially female sex making sperm in larvae and oocytes in adults. Here we focus on GSC regulation in XO males. Sexual dimorphism of niche architecture, reported previously, suggested that the molecular responses to niche signaling or numbers of GSCs might also be sexually distinct. Remarkably, this is not the case. This work extends our understanding of the sexually dimorphic niche architecture, but also demonstrates that the dimorphic niches drive a similar molecular response and maintain a similar number of GSCs in their stem cell pools.

PMID:
31067147
PMCID:
PMC6727753
DOI:
10.1091/mbc.E19-03-0164
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Atypon Icon for PubMed Central
Loading ...
Support Center