Send to

Choose Destination
See comment in PubMed Commons below
J Immunol. 1987 May 15;138(10):3254-8.

Susceptibility of astrocytes to class I MHC antigen-specific cytotoxicity.


Cell-mediated immune mechanisms contribute to tissue injury within the central nervous system (CNS) in a number of experimental diseases, including experimental allergic encephalomyelitis and some viral infections, and may mediate lesion formation in multiple sclerosis. We investigated the conditions under which murine astrocytes can become susceptible targets of cytotoxic T cells. We demonstrate that mouse astrocytes in vitro can be susceptible targets of class I major histocompatibility complex (MHC)-specific cytotoxicity mediated by L3 cytotoxic T lymphocytes (CTL). Expression of appropriate class I MHC antigen on the astrocytes is a requirement, because only cells bearing the H-2d phenotype are susceptible to lysis by L3 cells. BALB/c-H-2dm2 astrocytes lacking the specific determinant recognized by L3 cells are not susceptible to lysis. Astrocyte lysis can, however, occur under culture conditions in which MHC antigen expression is immunocytochemically low or undetectable. Cytolysis can be inhibited by pretreatment of the effector L3 cells with either anti-Lyt-2 monoclonal antibody (mAb) or anti-clonotypic mAb and by preincubation of the glial target cells with an appropriate anti-H-2 antibody (anti-H-2Ld). mAb to lymphocyte function-associated antigen does not inhibit cytotoxicity of the L3 clone against glial cells. Knowledge regarding the role of CTL within the CNS, including the surface molecules involved in glial cell lysis, could further the development of immunotherapies designed to effect immune reactivity within the CNS.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center