Send to

Choose Destination
PLoS Genet. 2019 May 1;15(5):e1008123. doi: 10.1371/journal.pgen.1008123. eCollection 2019 May.

Mouse genome-wide association and systems genetics identifies Lhfp as a regulator of bone mass.

Author information

Center for Public Health Genomics, University of Virginia, Charlottesville, VA, United States of America.
Department of Public Health Sciences, University of Virginia, Charlottesville, VA, United States of America.
Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, United States of America.
The Jackson Laboratory, Bar Harbor, ME, United States of America.
Center for Musculoskeletal Research, University of Rochester, Rochester, NY, United States of America.


Bone mineral density (BMD) is a strong predictor of osteoporotic fracture. It is also one of the most heritable disease-associated quantitative traits. As a result, there has been considerable effort focused on dissecting its genetic basis. Here, we performed a genome-wide association study (GWAS) in a panel of inbred strains to identify associations influencing BMD. This analysis identified a significant (P = 3.1 x 10-12) BMD locus on Chromosome 3@52.5 Mbp that replicated in two separate inbred strain panels and overlapped a BMD quantitative trait locus (QTL) previously identified in a F2 intercross. The association mapped to a 300 Kbp region containing four genes; Gm2447, Gm20750, Cog6, and Lhfp. Further analysis found that Lipoma HMGIC Fusion Partner (Lhfp) was highly expressed in bone and osteoblasts. Furthermore, its expression was regulated by a local expression QTL (eQTL), which overlapped the BMD association. A co-expression network analysis revealed that Lhfp was strongly connected to genes involved in osteoblast differentiation. To directly evaluate its role in bone, Lhfp deficient mice (Lhfp-/-) were created using CRISPR/Cas9. Consistent with genetic and network predictions, bone marrow stromal cells (BMSCs) from Lhfp-/- mice displayed increased osteogenic differentiation. Lhfp-/- mice also had elevated BMD due to increased cortical bone mass. Lastly, we identified SNPs in human LHFP that were associated (P = 1.2 x 10-5) with heel BMD. In conclusion, we used GWAS and systems genetics to identify Lhfp as a regulator of osteoblast activity and bone mass.

Supplemental Content

Full text links

Icon for Public Library of Science Icon for PubMed Central
Loading ...
Support Center