Format

Send to

Choose Destination
Plant Dis. 2019 Jul;103(7):1631-1641. doi: 10.1094/PDIS-11-18-1976-RE. Epub 2019 Apr 29.

Resistance to Phytophthora cinnamomi in American Chestnut (Castanea dentata) Backcross Populations that Descended from Two Chinese Chestnut (Castanea mollissima) Sources of Resistance.

Author information

1
1 The American Chestnut Foundation, Asheville, NC 28804.
2
2 The American Chestnut Foundation and Chestnut Return Farms, Seneca, SC 29672.
3
3 Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695.
4
4 United States Department of Agriculture Forest Service Resistance Screening Center, Asheville, NC 28806.
5
5 Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634.

Abstract

Restoration of American chestnut (Castanea dentata) depends on combining resistance to both the chestnut blight fungus (Cryphonectria parasitica) and Phytophthora cinnamomi, which causes Phytophthora root rot, in a diverse population of C. dentata. Over a 14-year period (2004 to 2017), survival and root health of American chestnut backcross seedlings after inoculation with P. cinnamomi were compared among 28 BC3, 66 BC4, and 389 BC3F3 families that descended from two BC1 trees (Clapper and Graves) with different Chinese chestnut grandparents. The 5% most resistant Graves BC3F3 families survived P. cinnamomi infection at rates of 75 to 100% but had mean root health scores that were intermediate between resistant Chinese chestnut and susceptible American chestnut families. Within Graves BC3F3 families, seedling survival was greater than survival of Graves BC3 and BC4 families and was not genetically correlated with chestnut blight canker severity. Only low to intermediate resistance to P. cinnamomi was detected among backcross descendants from the Clapper tree. Results suggest that major-effect resistance alleles were inherited by descendants from the Graves tree, that intercrossing backcross trees enhances progeny resistance to P. cinnamomi, and that alleles for resistance to P. cinnamomi and C. parasitica are not linked. To combine resistance to both C. parasitica and P. cinnamomi, a diverse Graves backcross population will be screened for resistance to P. cinnamomi, survivors bred with trees selected for resistance to C. parasitica, and progeny selected for resistance to both pathogens will be intercrossed.

KEYWORDS:

; Phytophthora root rot; backcross breeding; chestnut blight; heritability; host resistance; ink disease

PMID:
31033400
DOI:
10.1094/PDIS-11-18-1976-RE

Supplemental Content

Full text links

Icon for Atypon
Loading ...
Support Center