Silicon Availability from Chemically Diverse Fertilizers and Secondary Raw Materials

Environ Sci Technol. 2019 May 7;53(9):5359-5368. doi: 10.1021/acs.est.8b06597. Epub 2019 Apr 26.

Abstract

Crops may require Si fertilization to sustain yields. Potential Si fertilizers include industrial byproducts (e.g., steel slags), mined minerals (CaSiO3), fused Ca-Mg-phosphates, biochar, ash, diatomaceous earth, and municipal sewage sludge. To date, no extraction method was shown to accurately predict plant availability of Si from such chemically diverse Si fertilizers. We tested a wide range of products in greenhouse experiments and related the plant Si content to Si extracted by several common Si fertilizer tests: 5-day extraction in Na2CO3-NH4NO3, 0.5 mol L-1 HCl, and Resin extraction. In addition, we tested a novel sink extraction approach for Si(OH)40 that utilizes a dialysis membrane filled with ferrihydrite ("Iron Bag"). Wheat straw biochars and ash exhibited equivalent or marginally higher Si solubility and availability compared to wheat straw. Thermo-chemically treated municipal sewage sludge, as well as diatomaceous earth, did not release substantial amounts of Si. The Resin and the Iron Bag extraction methods gave the best results to predict plant availability of Si. These methods better reproduce the conditions of fertilizer dissolution in soil and around the root by (1) buffering the pH close to neutral and (2) extracting the dissolved Si(OH)40 with ferrihydrite (Iron Bag method) for maximum quantitative extraction.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Fertilizers*
  • Renal Dialysis
  • Sewage
  • Silicon*
  • Soil
  • Triticum

Substances

  • Fertilizers
  • Sewage
  • Soil
  • Silicon