Format

Send to

Choose Destination
See comment in PubMed Commons below
Am J Physiol. 1986 Dec;251(6 Pt 2):H1316-23.

Role of vasopressin in the cardiovascular response to hypoxia in the conscious rat.

Abstract

Previous experiments have demonstrated that hypoxia stimulates the release of arginine vasopressin in conscious animals including the rat. The present study was designed to test whether AVP may exert a vasoconstrictor influence during hypoxia at varying levels of CO2. Systemic hemodynamics were assessed in conscious rats for 30 min under hypocapnic hypoxic, isocapnic hypoxic, hypercapnic hypoxic, and room air conditions. Progressive effects on heart rate (HR), cardiac output (CO), and total peripheral resistance (TPR) were observed with varying CO2 under hypoxic conditions. Hypocapnic hypoxia [arterial PO2 (PaO2) = 32 Torr; arterial PCO2 (PaCO2) = 22 Torr] caused HR and CO to rise and TPR to fall. Isocapnic hypoxia (PaO2 = 36 Torr; PaCO2 = 35 Torr) was associated with no significant changes in HR and CO or TPR, whereas hypercapnic hypoxia (PaO2 = 35 Torr; PaCO2 = 51 Torr) caused HR and CO to fall and TPR to rise. Room air time control experiments were associated with no change in measured hemodynamic variables. To determine the possible role of circulating AVP on these cardiovascular responses, additional experiments were performed where the specific V1-vasopressinergic antagonist d(CH2)5Tyr(Me)AVP (10 micrograms/kg iv) was administered at the midpoint of hypoxic exposure. Antagonist administration had no effect on hypocapnic hypoxic animals or animals breathing room air; however, blood pressure and TPR were significantly reduced by d(CH2)5Tyr(Me)AVP in both isocapnic and hypercapnic hypoxic animals. The heart rate response to hypoxia at the various CO2 levels was unaffected; however, cardiac output and stroke volume were increased after V1-antagonism in the isocapnic and hypercapnic hypoxic animals.(ABSTRACT TRUNCATED AT 250 WORDS)

PMID:
3098115
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center