Format

Send to

Choose Destination
Neurosci Lett. 2019 Apr 8;704:212-219. doi: 10.1016/j.neulet.2019.04.016. [Epub ahead of print]

An inducible model of human amylin overexpression reveals diverse transcriptional changes.

Author information

1
Department of Biological Sciences, The George Washington University, Science and Engineering Hall 6000, 800 22nd St. N.W., Washington DC, 20052, USA; Institute for Neuroscience, The George Washington University, 636 Ross Hall, 2300 I St. N.W. Washington DC, 20052, USA.
2
Department of Biological Sciences, The George Washington University, Science and Engineering Hall 6000, 800 22nd St. N.W., Washington DC, 20052, USA.
3
Department of Biological Sciences, The George Washington University, Science and Engineering Hall 6000, 800 22nd St. N.W., Washington DC, 20052, USA; Institute for Neuroscience, The George Washington University, 636 Ross Hall, 2300 I St. N.W. Washington DC, 20052, USA. Electronic address: damienoh@gwu.edu.

Abstract

Human Islet Amyloid Polypeptide or amylin is a neuroendocrine peptide with important endocrine and paracrine functions. Excessive production and accumulation of human amylin in the pancreas can lead to its aggregation and apoptosis of islet β-cells. Amylin has been shown to function within the central nervous system to decrease food intake, and more recently, it has been revealed that amylin is directly transcribed from neurons of the central nervous system, including the hypothalamus, arcuate nucleus, medial preoptic area, and nucleus accumbens. These findings alter the current model of how amylin targets the nervous system, and as a result may lead to obesity and type II diabetes mellitus. Here we set out to use Caenorhabditis elegans as an inducible in vivo model system to study the effects of amylin overexpression in tissues that include the nervous system. We profiled the transcriptional changes in transgenic animals expressing human amylin through RNA-seq. Using this genome-wide approach our results revealed for the first time that expression of human amylin in tissues including the nervous system induce diverse physiological responses in various signaling pathways. From our characterization of transgenic C. elegans animals expressing human amylin, we also observed specific defects in neural developmental programs as well as sensory behavior. Taken together, our data demonstrate the utility of using C. elegans as a valuable in vivo model to study human amylin toxicity.

KEYWORDS:

C. elegans; Hyperamylinemia; Neurons; RNA-seq; Transcriptome

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center