Format

Send to

Choose Destination
JCI Insight. 2019 Apr 9;5. pii: 127356. doi: 10.1172/jci.insight.127356.

ERK1/2 signaling induces skeletal muscle slow fiber-type switching and reduces muscular dystrophy disease severity.

Abstract

Mitogen-activated protein kinase (MAPK) signaling consists of an array of successively acting kinases. The extracellular signal-regulated kinases 1/2 (ERK1/2) are major components of the greater MAPK cascade that transduce growth factor signaling at the cell membrane. Here we investigated ERK1/2 signaling in skeletal muscle homeostasis and disease. Using mouse genetics, we observed that the muscle-specific expression of a constitutively active MEK1 mutant promotes greater ERK1/2 signaling that mediates fiber-type switching to a slow, oxidative phenotype with type I myosin heavy chain expression. Using a conditional and temporally regulated Cre strategy as well as Mapk1 (ERK2) and Mapk3 (ERK1) genetically targeted mice, MEK1-ERK2 signaling was shown to underlie this fast-to-slow fiber type switching in adult skeletal muscle as well as during development. Physiologic assessment of these activated MEK1-ERK1/2 mice showed enhanced metabolic activity and oxygen consumption with greater muscle fatigue resistance. Moreover, induction of MEK1-ERK1/2 signaling increased dystrophin and utrophin protein expression in a mouse model of limb-girdle muscle dystrophy and protected myofibers from damage. In summary, sustained MEK1-ERK1/2 activity in skeletal muscle produces a fast-to-slow fiber-type switch that protects from muscular dystrophy, suggesting a therapeutic approach to enhance the metabolic effectiveness of muscle and protect from dystrophic disease.

KEYWORDS:

Mouse models; Muscle Biology; Neuromuscular disease; Skeletal muscle

PMID:
30964448
DOI:
10.1172/jci.insight.127356
Free full text

Supplemental Content

Full text links

Icon for American Society for Clinical Investigation
Loading ...
Support Center