Format

Send to

Choose Destination
BMC Genomics. 2019 Apr 8;20(1):275. doi: 10.1186/s12864-019-5642-0.

A hybrid de novo genome assembly of the honeybee, Apis mellifera, with chromosome-length scaffolds.

Author information

1
Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
2
Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
3
USDA-ARS Insect Genetics and Biochemistry Research Unit, Fargo, ND, USA.
4
USDA-ARS Bee Research Lab, Beltsville, MD, USA.
5
Okinawa Institute of Science and Technology, Okinawa, Japan.
6
Department of Entomology and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
7
Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden. matthew.webster@imbim.uu.se.

Abstract

BACKGROUND:

The ability to generate long sequencing reads and access long-range linkage information is revolutionizing the quality and completeness of genome assemblies. Here we use a hybrid approach that combines data from four genome sequencing and mapping technologies to generate a new genome assembly of the honeybee Apis mellifera. We first generated contigs based on PacBio sequencing libraries, which were then merged with linked-read 10x Chromium data followed by scaffolding using a BioNano optical genome map and a Hi-C chromatin interaction map, complemented by a genetic linkage map.

RESULTS:

Each of the assembly steps reduced the number of gaps and incorporated a substantial amount of additional sequence into scaffolds. The new assembly (Amel_HAv3) is significantly more contiguous and complete than the previous one (Amel_4.5), based mainly on Sanger sequencing reads. N50 of contigs is 120-fold higher (5.381 Mbp compared to 0.053 Mbp) and we anchor > 98% of the sequence to chromosomes. All of the 16 chromosomes are represented as single scaffolds with an average of three sequence gaps per chromosome. The improvements are largely due to the inclusion of repetitive sequence that was unplaced in previous assemblies. In particular, our assembly is highly contiguous across centromeres and telomeres and includes hundreds of AvaI and AluI repeats associated with these features.

CONCLUSIONS:

The improved assembly will be of utility for refining gene models, studying genome function, mapping functional genetic variation, identification of structural variants, and comparative genomics.

KEYWORDS:

Centromeres; Genome assembly; Hi-C; Linked-read sequencing; Optical mapping; Single-molecule real-time (SMRT) sequencing; Telomeres

Supplemental Content

Full text links

Icon for BioMed Central Icon for PubMed Central
Loading ...
Support Center