Format

Send to

Choose Destination
IEEE Trans Neural Syst Rehabil Eng. 2019 May;27(5):956-962. doi: 10.1109/TNSRE.2019.2907200. Epub 2019 Mar 25.

Counteracting Electrode Shifts in Upper-Limb Prosthesis Control via Transfer Learning.

Abstract

Research on machine learning approaches for upper-limb prosthesis control has shown impressive progress. However, translating these results from the lab to patient's everyday lives remains a challenge because advanced control schemes tend to break down under everyday disturbances, such as electrode shifts. Recently, it has been suggested to apply adaptive transfer learning to counteract electrode shifts using as little newly recorded training data as possible. In this paper, we present a novel, simple version of transfer learning and provide the first user study demonstrating the effectiveness of transfer learning to counteract electrode shifts. For this purpose, we introduce the novel Box and Beans test to evaluate prosthesis proficiency and compare user performance with an initial simple pattern recognition system, the system under electrode shifts, and the system after transfer learning. Our results show that transfer learning could significantly alleviate the impact of electrode shifts on user performance in the Box and Beans test.

PMID:
30908234
DOI:
10.1109/TNSRE.2019.2907200

Supplemental Content

Full text links

Icon for IEEE Engineering in Medicine and Biology Society
Loading ...
Support Center