Format

Send to

Choose Destination
J Phys Chem A. 2019 Apr 4. doi: 10.1021/acs.jpca.9b00846. [Epub ahead of print]

Theoretical Investigations into the Electron and Ambipolar Transport Properties of Anthracene-Based Derivatives.

Author information

1
Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry , Jilin University , Changchun 130023 , China.
2
College of Chemistry and Material , Weinan Normal University , Weinan 714000 , China.

Abstract

To obtain anthracene-based derivatives with electron transport behavior, two series of anthracene-based derivatives modified by trifluoromethyl groups (-CF3) and cyano groups (-CN) at the 9,10-positions of the anthracene core were studied. Their electronic structures and crystal packings were also analyzed and compared. The charge-carrier mobilities were evaluated by quantum nuclear tunneling theory based on the incoherent charge-hopping model. Our results suggest that introducing -CN groups at 9,10-positions of the anthracene core is more favorable than introducing -CF3 to maintain great planar rigidity of the anthracene skeleton, decreasing more lowest unoccupied molecular orbital energy levels (0.45-0.55 eV), reducing reorganization energies, and especially forming a tight packing motif. Eventually, the excellent electron transport materials could be obtained. The molecule 1-B in Series 1 containing -CF3 groups is an ambipolar organic semiconductor (OSC) material with a 2D transport network, and its value of μh-maxe-max is 1.75/0.47 cm2 V-1 s-1 along different directions; 2-A and 2-C in Series 2 with -CN groups are excellent n-type OSC candidates with the maximum intrinsic mobilities of 3.74 and 2.69 cm2 V-1 s-1 along the π-π stacking direction, respectively. Besides, the Hirshfeld surface and quantum theory of atoms in molecules analyses were applied to reveal the relationship between noncovalent interactions and crystal stacking.

PMID:
30900901
DOI:
10.1021/acs.jpca.9b00846

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center