Format

Send to

Choose Destination
Mater Sci Eng C Mater Biol Appl. 2019 Jun;99:1153-1163. doi: 10.1016/j.msec.2019.02.069. Epub 2019 Feb 20.

The construction of thiol-functionalized DNAsomes with small molecules response and protein release.

Author information

1
MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, The Key Laboratory of Microsystems and Microstructures Manufacturing, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China. Electronic address: gywuchem@163.com.
2
MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, The Key Laboratory of Microsystems and Microstructures Manufacturing, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China.
3
MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, The Key Laboratory of Microsystems and Microstructures Manufacturing, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China. Electronic address: xinhuang@hit.edu.cn.
4
MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, The Key Laboratory of Microsystems and Microstructures Manufacturing, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China. Electronic address: huangyd@hit.edu.cn.

Abstract

In this work, a poly(N-isopropylacrylamide) polymer (PNIPAAm) was prepared via the photoinduced reversible addition-fragmentation chain transfer (RAFT) polymerization using Ru(bpy)3Cl2·6H2O as photoinitiator. The design and spontaneous assembly of thiol-functionalized DNA-Thiol/PNIPAAm polymeric capsule (DNAsomes) by water-in-oil Pickering emulsion method and effective response with small molecules (Sybr green and phenanthrene) were described. The intermediate product, DNA-Thiol/PNIPAAm conjugates and DNAsomes were characterized by using 1H NMR, dynamic light scattering (DLS), SEM, TEM and UV-vis methods. The obtained results indicated that DNA-Thiol/PNIPAAm constructs assembled in a Pickering emulsion could produce DNA-based spherical DNAsomes with typically 3.3-267.7 μm in diameter. The DNAsomes showed a vesicle formation approximately 2 μm in diameter, resulting in phenanthrene molecule intercalating with DNAsomes. The phenomenon indicated that the DNA-Thiol/PNIPAAm conjugates may have potential applications in recognition polycyclic aromatic hydrocarbon molecules. The membrane of the DNAsomes could effective response toward small molecules such as Sybr green or phenanthrene, and DNAsomes has release capability of protein (BSA) under reductive agent glutathione (GSH). Our results highlight the potential of integrating aspects of supramolecular and polymer chemistry into the design and construction of DNA-polymeric capsule, guest molecule encapsulation, control delivery of drugs, recognition organic polycyclic aromatic hydrocarbon molecules and gene-directed capsule synthesis.

KEYWORDS:

Pickering emulsion; Polymeric capsule; Self-assembly

PMID:
30889649
DOI:
10.1016/j.msec.2019.02.069

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center