Format

Send to

Choose Destination
Ecotoxicol Environ Saf. 2019 Jul 15;175:83-89. doi: 10.1016/j.ecoenv.2019.03.043. Epub 2019 Mar 16.

Identification of differentially expressed MiRNAs profile in a thiram-induced tibial dyschondroplasia.

Author information

1
College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China; College of Animals Husbandry and Veterinary Medicine, Tibet Agricultural and Animal Husbandry University, Linzhi, Tibet, 860000, PR China; College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
2
College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China; University College of Veterinary & Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
3
College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China.
4
College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China; Department of Pathology, Cholistan University of Veterinary & Animal Sciences (CUVAS), Bahawalpur, 63100, Pakistan.
5
College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China; College of Animals Husbandry and Veterinary Medicine, Tibet Agricultural and Animal Husbandry University, Linzhi, Tibet, 860000, PR China. Electronic address: lijk210@sina.com.

Abstract

Tetramethyl thiuram disulfide (thiram) is a dithiocarbamate, which is widely used on seeds and storing food grains. The incorporation of thiram into the food chain could be a risk for both human beings and animals. Thiram-contaminated feed has been considered a common cause of tibial dyschondrolplasia (TD) in many avian species. The molecular mechanism of action of thiram on TD involving microRNA (miRNA) is not fully understood. For this purpose, the morbidity and pathologic changes were evaluated to understand the TD, and high-throughput RNA sequencing (RNA-Seq) was performed to explore the differentially expressed miRNAs (DEGs). RT-qPCR was used to confirm the validity as compared with sequencing data. The results showed that the marked alterations in the growth plate of the TD chickens were noticeable, with shrinking cells and irregular chondrocyte columns as compared with control group. In this study, we identified total 375 (p < 0.1), 340 (p < 0.05) and 266 (p < 0.01) significant DEGs between the TD and control groups. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of DEGs showed that the target miRNAs were significantly enriched in different treatment groups, such as apoptosis, mRNA surveillance pathway, mitophagy-animal, etc. This study provides theoretical basis for in-depth understanding the pathogenesis of thiram-induced TD and explore the new insights towards the proposed molecular mechanism of specific miRNA as biomarkers for effective gene diagnosis and treatment of TD in broilers.

KEYWORDS:

Chickens; Differentially expressed miRNAs; Thiram; Tibial dyschondroplasia; Toxicological functions

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center