Send to

Choose Destination
Dalton Trans. 2019 Apr 2;48(14):4625-4635. doi: 10.1039/c9dt00334g.

Ru(O2CCF3)2(PPh3)2 and ruthenium phosphine complexes bearing fluoroacetate ligands: synthesis, characterization and catalytic activity.

Author information

Molecular Catalysis, Catalysis Research Center and Department of Chemistry, Technische Universität München, Lichtenbergstr. 4, 85747 Garching bei München, Germany.


The dinuclear ruthenium(ii) phosphine complexes Ru2Cl(O2CCHxF3-x)3(PPh3)4(μ-H2O) (x = 0, 1, 2), containing fluoroacetate ligands, were prepared from RuCl2(PPh3)3 and NaO2CCHxF3-x in tBuOH. The X-ray characterization of these complexes reveals a bridging water molecule, stabilized by hydrogen bonds with the fluoroacetate ligands. The isolation of the complex Ru(O2CCF3)2(PPh3)2 is described, starting from RuCl2(PPh3)3 or Ru2Cl(O2CCF3)3(PPh3)4(μ-H2O) and TlO2CCF3, correcting the reported preparation in which Ru2Cl(O2CCF3)3(PPh3)4(μ-H2O) was obtained. Ru(O2CCF3)2(PPh3)2 easily reacts with CO, affording Ru(O2CCF3)2(CO)2(PPh3)2. The protonation of Ru(OAc)2(dppb) with trifluoroacetic acid in the presence of bidentate O and N donor ligands affords the complexes Ru(O2CCF3)2(dppb)(LL) (LL = ethyleneglycol, ethylenediamine), which are catalytically active in the transfer hydrogenation of ketones with 2-propanol. In the reduction of cyclohexanone, the glycol derivative displays a higher catalytic activity than the diamine complex, reaching a TOF of 22 000 h-1.


Supplemental Content

Full text links

Icon for Royal Society of Chemistry
Loading ...
Support Center