Send to

Choose Destination
Beilstein J Nanotechnol. 2019 Feb 28;10:578-588. doi: 10.3762/bjnano.10.59. eCollection 2019.

Biomimetic synthesis of Ag-coated glasswing butterfly arrays as ultra-sensitive SERS substrates for efficient trace detection of pesticides.

Author information

State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao, Hebei 066004, P.R. China.
Faculty of science, Beijing University of Chemical Technology, Beijing 100029, P.R. China.
Department of Mathematics, NC State University, Raleigh, NC 276968205, USA.


In this work, we report a biomimetic synthesis route of 3D Ag nanofilm/glasswing butterfly wing hybrids (Ag-G.b.) by magnetron sputtering technology. The 3D surface-enhanced Raman scattering (SERS) substrate is fabricated from an original chitin-based nanostructure, which serves as a bio-scaffold for Ag nanofilms to be coated on. The novel crisscrossing plate-like nanostructures of 3D Ag-G.b. nanohybrids with thick Ag nanofilms provide a substantial contribution to SERS enhancement. Measuring the SERS performance with crystal violet (CV), the Ag-G.b. nanohybrids with the sputtering time of 20 min (Ag-G.b.-20) shows the highest enhancement performance with an enhancement factor (EF) of up to 2.96 × 107. The limit of detection (LOD) for CV was as low as 10-11 M, demonstrating the ultrahigh sensitivity of the Ag-G.b.-20 substrate. In addition, the Ag-G.b.-20 substrate has an outstanding reproducibility across the entire area with the maximum value of relative standard deviation (RSD) of less than 10.78%. The nanohybrids also exhibit a long-term stability regarding Raman enhancement, as suggested by a duration stability test over a period of 60 days. Importantly, the high-performance Ag-G.b.-20 substrate is further applied as an ultra-sensitive SERS platform for the trace detection of acephate, showing its great potential application in biochemical sensing and food security.


Ag nanofilm; glasswing butterfly; pesticide; surface-enhanced Raman scattering (SERS)

Supplemental Content

Full text links

Icon for PubMed Central
Loading ...
Support Center