Format

Send to

Choose Destination
Proc Natl Acad Sci U S A. 2019 May 28;116(22):10664-10673. doi: 10.1073/pnas.1813901116. Epub 2019 Mar 4.

Mapping Solar System chaos with the Geological Orrery.

Author information

1
Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY 10968; polsen@ldeo.columbia.edu.
2
Observatoire de Paris, Paris Sciences & Lettres, Research University, Sorbonne Université, 75006 Paris, France.
3
Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY 10968.
4
Earth and Planetary Sciences, Rutgers University, Piscataway, NJ 08854.
5
ExxonMobil Exploration Company, Houston, TX 77060.
6
State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Paleontology and Center for Excellence in Life and Paleoenvironment, 210008 Nanjing, China.
7
Ocean and Earth Science, National Oceanography Centre, University of Southampton, SO14 3ZH Southampton, United Kingdom.

Abstract

The Geological Orrery is a network of geological records of orbitally paced climate designed to address the inherent limitations of solutions for planetary orbits beyond 60 million years ago due to the chaotic nature of Solar System motion. We use results from two scientific coring experiments in Early Mesozoic continental strata: the Newark Basin Coring Project and the Colorado Plateau Coring Project. We precisely and accurately resolve the secular fundamental frequencies of precession of perihelion of the inner planets and Jupiter for the Late Triassic and Early Jurassic epochs (223-199 million years ago) using the lacustrine record of orbital pacing tuned only to one frequency (1/405,000 years) as a geological interferometer. Excepting Jupiter's, these frequencies differ significantly from present values as determined using three independent techniques yielding practically the same results. Estimates for the precession of perihelion of the inner planets are robust, reflecting a zircon U-Pb-based age model and internal checks based on the overdetermined origins of the geologically measured frequencies. Furthermore, although not indicative of a correct solution, one numerical solution closely matches the Geological Orrery, with a very low probability of being due to chance. To determine the secular fundamental frequencies of the precession of the nodes of the planets and the important secular resonances with the precession of perihelion, a contemporaneous high-latitude geological archive recording obliquity pacing of climate is needed. These results form a proof of concept of the Geological Orrery and lay out an empirical framework to map the chaotic evolution of the Solar System.

KEYWORDS:

Milankovitch; Solar System; Triassic–Jurassic; chaos; orbital dynamics

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center