Format

Send to

Choose Destination
Cancer Cell. 2019 Apr 15;35(4):545-557. doi: 10.1016/j.ccell.2019.01.019. Epub 2019 Feb 28.

Hacking the Cancer Genome: Profiling Therapeutically Actionable Long Non-coding RNAs Using CRISPR-Cas9 Screening.

Author information

1
Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research, University of Bern, Bern, Switzerland.
2
Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research, University of Bern, Bern, Switzerland; Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland.
3
Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research, University of Bern, Bern, Switzerland. Electronic address: rory.johnson@dbmr.unibe.ch.

Abstract

Long non-coding RNAs (lncRNAs) represent a huge reservoir of potential cancer targets. Such "onco-lncRNAs" have resisted traditional RNAi methods, but CRISPR-Cas9 genome editing now promises functional screens at high throughput and low cost. The unique biology of lncRNAs demands screening strategies distinct from protein-coding genes. The first such screens have identified hundreds of onco-lncRNAs promoting cell proliferation and drug resistance. Ongoing developments will further improve screen performance and translational relevance. This Review aims to highlight the potential of CRISPR screening technology for discovering new onco-lncRNAs, and to guide molecular oncologists wishing to apply it to their cancer of interest.

KEYWORDS:

CRISPR-Cas9; cancer; drug targets; genome editing; lncRNA; long non-coding RNA; screening

Publication type

Publication type

Supplemental Content

Loading ...
Support Center