BiOxCly/BiOmBrn/BiOpIq/GO quaternary composites: Syntheses and application of visible-light-driven photocatalytic activities

J Colloid Interface Sci. 2019 May 15:544:25-36. doi: 10.1016/j.jcis.2019.02.067. Epub 2019 Feb 21.

Abstract

Herein, the preparation of numerous bismuth oxychloride/bismuth oxybromide/bismuth oxyiodide/graphene oxide (BiOxCly/BiOmBrn/BiOpIq/GO) composites is reported. A facile hydrothermal method was employed to synthesize these photocatalysts, which had various GO contents. A total of 10 bismuth-oxyhalide composites were isolated and characterized using FE-SEM, XRD, FE-TEM, UV-Vis-DRS, FT-IR, EPR, HR-XPS, PL, and BET. The photocatalytic efficiencies of these 10 bismuth-oxyhalide composites were measured under visible-light irradiation by estimating the concentration of 2-hydroxybenzoic acid (HBA) degradation. The findings indicated that the rate constant order of the HBA degradations was BiOCl/BiOBr/BiOI/GO > Bi3O4Cl/Bi3O4Br/Bi4O5I2/GO > Bi12O17Cl2/Bi3O4Cl/Bi12O17Br2/ Bi7O9I3/GO > Bi12O17Cl2/BiOBr/BiOI/GO > Bi12O17Cl2/Bi12O17Br2/Bi7O9I3/Bi5O7I/GO > Bi3O4Cl/BiOBr/Bi3O4Br/Bi4O5I2 > Bi3O4Cl/BiOBr/BiOI > BiOCl/BiOBr/BiOI > Bi12O17Cl2/Bi5O7Br/Bi5O7I > GO. A maximum rate constant of 0.191 h-1 was reached for BiOCl/BiOBr/BiOI/GO, providing photocatalytic efficiency that was eight times higher than that of composite BiOCl/BiOBr/BiOI. We also proposed a photocatalytic mechanism demonstrating that O2-, h±, OH, and 1O2 are all essential for HBA degradation.

Keywords: 2-hydroxybenzoic acid; BiO(x)Cl(y)/BiO(m)Br(n)/BiO(p)I(q); Composites; GO; Photocatalytic.