Format

Send to

Choose Destination
Nat Commun. 2019 Feb 27;10(1):970. doi: 10.1038/s41467-019-08875-x.

Persistent DNA-break potential near telomeres increases initiation of meiotic recombination on short chromosomes.

Author information

1
Department of Biology, New York University, New York, NY, 10003, USA.
2
Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
3
Amazon AI, Seattle, WA, 98101, USA.
4
Frederick National Laboratory for Cancer Research, Frederick, MD, 21701, USA.
5
BioQuant Center, Heidelberg University, 69120, Heidelberg, Germany.
6
Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas, University of Salamanca, 37007, Salamanca, Spain.
7
Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794, USA.
8
Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
9
Department of Biology, New York University, New York, NY, 10003, USA. andi@nyu.edu.

Abstract

Faithful meiotic chromosome inheritance and fertility rely on the stimulation of meiotic crossover recombination by potentially genotoxic DNA double-strand breaks (DSBs). To avoid excessive damage, feedback mechanisms down-regulate DSBs, likely in response to initiation of crossover repair. In Saccharomyces cerevisiae, this regulation requires the removal of the conserved DSB-promoting protein Hop1/HORMAD during chromosome synapsis. Here, we identify privileged end-adjacent regions (EARs) spanning roughly 100 kb near all telomeres that escape DSB down-regulation. These regions retain Hop1 and continue to break in pachynema despite normal synaptonemal complex deposition. Differential retention of Hop1 requires the disassemblase Pch2/TRIP13, which preferentially removes Hop1 from telomere-distant sequences, and is modulated by the histone deacetylase Sir2 and the nucleoporin Nup2. Importantly, the uniform size of EARs among chromosomes contributes to disproportionately high DSB and repair signals on short chromosomes in pachynema, suggesting that EARs partially underlie the curiously high recombination rate of short chromosomes.

PMID:
30814509
PMCID:
PMC6393486
DOI:
10.1038/s41467-019-08875-x
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Nature Publishing Group Icon for PubMed Central
Loading ...
Support Center