Format

Send to

Choose Destination
Sci Adv. 2019 Feb 15;5(2):eaau5759. doi: 10.1126/sciadv.aau5759. eCollection 2019 Feb.

In-memory computing on a photonic platform.

Author information

1
Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, UK.
2
IBM Research-Zurich, Säumerstrasse 4, 8803 Rüschlikon, Switzerland.
3
Institute of Physics, University of Muenster, Heisenbergstr, 11, 48149 Muenster, Germany.
4
Department of Engineering, University of Exeter, Exeter EX4 QF, UK.

Abstract

Collocated data processing and storage are the norm in biological computing systems such as the mammalian brain. As our ability to create better hardware improves, new computational paradigms are being explored beyond von Neumann architectures. Integrated photonic circuits are an attractive solution for on-chip computing which can leverage the increased speed and bandwidth potential of the optical domain, and importantly, remove the need for electro-optical conversions. Here we show that we can combine integrated optics with collocated data storage and processing to enable all-photonic in-memory computations. By employing nonvolatile photonic elements based on the phase-change material, Ge2Sb2Te5, we achieve direct scalar and matrix-vector multiplication, featuring a novel single-shot Write/Erase and a drift-free process. The output pulse, carrying the information of the light-matter interaction, is the result of the computation. Our all-optical approach is novel, easy to fabricate and operate, and sets the stage for development of entirely photonic computers.

Supplemental Content

Full text links

Icon for PubMed Central
Loading ...
Support Center