Format

Send to

Choose Destination
Trends Plant Sci. 2019 May;24(5):393-401. doi: 10.1016/j.tplants.2019.01.012. Epub 2019 Feb 18.

Yeast-Bacterium Interactions: The Next Frontier in Nectar Research.

Author information

1
KU Leuven, Department of Microbial and Molecular Systems (M2S), Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Campus De Nayer, B-2860 Sint-Katelijne-Waver, Belgium; Department of Biology, Stanford University, Stanford, CA 94305, USA. Electronic address: sealperez@gmail.com.
2
KU Leuven, Department of Microbial and Molecular Systems (M2S), Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Campus De Nayer, B-2860 Sint-Katelijne-Waver, Belgium.
3
Department of Biology, Stanford University, Stanford, CA 94305, USA. Electronic address: https://twitter.com/@TadashiFukami.

Abstract

Beyond its role as a reward for pollinators, floral nectar also provides a habitat for specialized and opportunistic yeasts and bacteria. These microbes modify nectar chemistry, often altering mutualistic relationships between plants and pollinators in ways that we are only beginning to understand. Many studies on this multi-partite system have focused on either yeasts or bacteria without consideration of yeast-bacterium interactions, but recent evidence suggests that such interactions drive the assembly of nectar microbial communities and its consequences for pollination. Unexplored potential mechanisms of yeast-bacterium interactions include the formation of physical complexes, nutritional interactions, antibiosis, signaling-based interactions, and horizontal gene transfer. We argue that studying these mechanisms can elucidate how nectar microbial communities are established and affect plant fitness via pollinators.

KEYWORDS:

biological interactions; community assembly; floral nectar; microbes; pollination

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center