Format

Send to

Choose Destination
Nanomaterials (Basel). 2019 Feb 13;9(2). pii: E256. doi: 10.3390/nano9020256.

Synthesis and Characterization of Elongated-Shaped Silver Nanoparticles as a Biocompatible Anisotropic SERS Probe for Intracellular Imaging: Theoretical Modeling and Experimental Verification.

Author information

1
Department of Physical, Chemical and Natural Systems, Universidad Pablo de Olavide, Carretera de Utrera Km 1, 41013 Seville, Spain. ccaro@bionand.es.
2
Departamento de Química, UCIBIO, REQUIMTE, Faculdade de Ciências, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal. ccaro@bionand.es.
3
CABIMER, Andalusian Center for Molecular Biology and Regenerative Medicine, Av. Americo Vespucio, 24, 41092 Sevilla, Spain. ccaro@bionand.es.
4
BIONAND, Andalusian Centre for Nanomedicine and Biotechnology, Junta de Andalucía, Universidad de Málaga, 29590 Málaga, Spain. ccaro@bionand.es.
5
Departamento de Química e Bioquímica, LAQV-REQUIMTE, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal. pedro.cq1@gmail.com.
6
Departamento de Química e Bioquímica, LAQV-REQUIMTE, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal. efpereir@fc.up.pt.
7
CABIMER, Andalusian Center for Molecular Biology and Regenerative Medicine, Av. Americo Vespucio, 24, 41092 Sevilla, Spain. jaime.munoz@cabimer.es.
8
Department of Medical Biochemistry, Molecular Biology and Immunology, Universidad de Sevilla, Av. Sanchez Pizjuan, 4, 41009 Sevilla, Spain. jaime.munoz@cabimer.es.
9
BIONAND, Andalusian Centre for Nanomedicine and Biotechnology, Junta de Andalucía, Universidad de Málaga, 29590 Málaga, Spain. mpernia@us.es.
10
Department of Organic and Pharmaceutical Chemistry, Universidad de Sevilla, 41012 Seville, Spain. mpernia@us.es.
11
BIONAND, Andalusian Centre for Nanomedicine and Biotechnology, Junta de Andalucía, Universidad de Málaga, 29590 Málaga, Spain. mlgarcia@bionand.es.
12
Department of Biochemistry, Molecular Biology and Immunology, Universidad de Málaga, 29071 Málaga, Spain. joseluisroyo@uma.es.
13
Department of Physical, Chemical and Natural Systems, Universidad Pablo de Olavide, Carretera de Utrera Km 1, 41013 Seville, Spain. josolimon@gmail.com.
14
Department of Physical, Chemical and Natural Systems, Universidad Pablo de Olavide, Carretera de Utrera Km 1, 41013 Seville, Spain. pjmerx@upo.es.
15
Department of Physical, Chemical and Natural Systems, Universidad Pablo de Olavide, Carretera de Utrera Km 1, 41013 Seville, Spain. apzadpar@upo.es.
16
CABIMER, Andalusian Center for Molecular Biology and Regenerative Medicine, Av. Americo Vespucio, 24, 41092 Sevilla, Spain. david.pozo@cabimer.es.
17
Department of Medical Biochemistry, Molecular Biology and Immunology, Universidad de Sevilla, Av. Sanchez Pizjuan, 4, 41009 Sevilla, Spain. david.pozo@cabimer.es.
18
Departamento de Química, UCIBIO, REQUIMTE, Faculdade de Ciências, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal. rft@fct.unl.pt.

Abstract

Progress in the field of biocompatible SERS nanoparticles has promising prospects for biomedical applications. In this work, we have developed a biocompatible Raman probe by combining anisotropic silver nanoparticles with the dye rhodamine 6G followed by subsequent coating with bovine serum albumin. This nanosystem presents strong SERS capabilities in the near infrared (NIR) with a very high (2.7 × 10⁷) analytical enhancement factor. Theoretical calculations reveal the effects of the electromagnetic and chemical mechanisms in the observed SERS effect for this nanosystem. Finite element method (FEM) calculations showed a considerable near field enhancement in NIR. Using density functional quantum chemical calculations, the chemical enhancement mechanism of rhodamine 6G by interaction with the nanoparticles was probed, allowing us to calculate spectra that closely reproduce the experimental results. The nanosystem was tested in cell culture experiments, showing cell internalization and also proving to be completely biocompatible, as no cell death was observed. Using a NIR laser, SERS signals could be detected even from inside cells, proving the applicability of this nanosystem as a biocompatible SERS probe.

KEYWORDS:

SERS; cancer; cell labeling; density functional theory calculations; finite element method; surface enhanced Raman scattering

Supplemental Content

Full text links

Icon for Multidisciplinary Digital Publishing Institute (MDPI) Icon for PubMed Central
Loading ...
Support Center