Format

Send to

Choose Destination
Environ Microbiol. 2019 Feb 17. doi: 10.1111/1462-2920.14566. [Epub ahead of print]

Viral and bacterial community responses to stimulated Fe(III)-bioreduction during simulated subsurface bioremediation.

Author information

1
Department of Biosystems Engineering and Soil Science, The University of Tennessee, Knoxville, TN, 37996, USA.
2
Department of Microbiology, The University of Tennessee, Knoxville, TN, 37996, USA.
3
Department of Civil and Environmental Engineering, The University of Tennessee, Knoxville, TN, 37996, USA.
4
Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.

Abstract

The delivery of fermentable substrate(s) to subsurface environments stimulates Fe(III)-bioreduction and achieves detoxification of organic/inorganic contaminants. Although, much research has been conducted on the microbiology of such engineered systems at lab and field scales, little attention has been given to the phage-host interactions and virus community dynamics in these environments. The objective was to determine the responses of soil bacterial communities and viral assemblages to stimulated anaerobic Fe(III)-bioreduction following electron donor (e.g. acetate) addition. Microbial communities, including viral assemblages, were investigated after 60 days of Fe(III)-bioreduction in laboratory-scale columns continuously fed with acetate-amended artificial groundwater. Viral abundances were greatest in the influent section and decreased along the flow path. Acetate availability was important in influencing bacterial diversity, microbial interactions and viral abundance and community composition. The impact of acetate addition was most evident in the influent section of the columns. The increased relative abundance of Fe(III)-reducing bacteria coincided with an increase in viral abundance in areas of the columns exhibiting the most Fe(III) reduction. The genetic composition of viruses in these column sections also differed from the control column and distal sections of acetate-treated columns suggesting viral communities responded to biostimulated Fe(III)-bioreduction.

PMID:
30773777
DOI:
10.1111/1462-2920.14566

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center