Format

Send to

Choose Destination
J Cell Physiol. 2019 Feb 11. doi: 10.1002/jcp.28288. [Epub ahead of print]

Myricetin relieves LPS-induced mastitis by inhibiting inflammatory response and repairing the blood-milk barrier.

Author information

1
Department of Theoretic Veterinary Medicine, Laboratory of Neuroendocrine Regulation, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China.
2
Division of Biology and Chemistry, Laboratory of Biomolecular Research, Paul Scherrer Institute, Villigen PSI, Switzerland.
3
Development Planning Section, Science and Technology Bureau, Taicang, Suzhou, Jiangsu, China.
4
Department of Disease Testing, Animal Disease Prevention and Control Center, Xining, Qinghai, China.
5
Department of Disease Testing, Animal Epidemic Prevention and Control Center, Fengman distric, Jilin municipality, Jilin province, China.

Abstract

Mastitis, an inflammation of mammary gland, is a serious disease that affects the health of dairy cows around the world. Myricetin, a flavonoid from Bayberry, has been reported to suppress various inflammatory response. The aim of this study was to evaluate the effect of myricetin on lipopolysaccharide (LPS)-induced in vivo and in vitro mastitis model and clarify the underlying mechanism. In vivo experiments, myricetin attenuated the severity of inflammatory lesion and neutrophil infiltration. Moreover, myricetin pretreatment induced a significant decrease in the activity of myeloperoxidase (MPO) and the production of TNF-α, IL-6, and IL-1β triggered by LPS. Myricetin pretreatment could also increase the integrity of the blood-milk barrier and upregulate the tight junction proteins in LPS-induced mice mastitis. In vitro, myricetin inhibited LPS-induced inflammatory response in mice mammary epithelial cells (mMECs). In the further mechanism studies, we found that the anti-inflammatory effect of myricetin was mediated by inhibiting LPS-induced phosphorylation of AKT, IKK-α, IκB-α, and P65 in vivo and in vitro. Collectively, these data suggested that myricetin effectively ameliorated the inflammatory response by inhibiting the AKT/IKK/NF-κB signaling pathway and repairing the integrity of blood-milk barrier in LPS-induced mice mastitis.

KEYWORDS:

AKT/IKK/NF-κB; LPS; blood-milk barrier; mastitis; myricetin

PMID:
30746687
DOI:
10.1002/jcp.28288

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center