Format

Send to

Choose Destination
Physiol Behav. 2019 Feb 7;204:49-57. doi: 10.1016/j.physbeh.2019.02.008. [Epub ahead of print]

Ghrelin: From a gut hormone to a potential therapeutic target for alcohol use disorder.

Author information

1
Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research and National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Bethesda, MD, USA; Center on Compulsive Behaviors, National Institutes of Health, Bethesda, MD, USA.
2
Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research and National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Bethesda, MD, USA.
3
Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research and National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Bethesda, MD, USA; Center on Compulsive Behaviors, National Institutes of Health, Bethesda, MD, USA; Medication Development Program, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA; Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, Brown University, Providence, RI, USA. Electronic address: lorenzo.leggio@nih.gov.

Abstract

Alcohol use disorder (AUD) is a leading cause of morbidity and mortality worldwide. However, treatment options, including pharmacotherapies, are limited in number and efficacy. Accumulating evidence suggests that elements of the gut-brain axis, such as neuroendocrine pathways and gut microbiome, are involved in the pathophysiology of AUD and, therefore, may be investigated as potential therapeutic targets. One pathway that has begun to be examined in this regard is the ghrelin system. Here, we review preclinical and clinical data on the relationship between ghrelin and alcohol-related outcomes, with a special focus on the role of the ghrelin system as a treatment target for AUD. Observational studies indicate that endogenous ghrelin levels are positively associated with craving for alcohol, subjective responses to alcohol, and brain activity in response to alcohol cues. Knockout rodent models suggest that deletion of the ghrelin peptide or receptor gene leads to reduction of alcohol intake and other alcohol-related outcomes. Different research groups have found that ghrelin administration increases, while ghrelin receptor (GHS-R1a) blockade reduces alcohol intake and other alcohol-related outcomes in rodents. Ghrelin administration in heavy-drinking individuals increases alcohol craving and self-administration and modulates brain activity in response to alcohol reward anticipation. PF-5190457, a GHS-R1a blocker, has been shown to be safe and tolerable when co-administered with alcohol. Furthermore, preliminary results suggest that this compound may reduce cue-elicited craving for alcohol in heavy-drinking individuals - a finding in need of replication. Collectively, the existing literature supports further examination of the ghrelin system as a therapeutic target for AUD. More research is also needed to understand the biobehavioral and molecular mechanisms underlying ghrelin's functions and to examine different interventional approaches to target the ghrelin system for AUD treatment.

KEYWORDS:

Alcohol; Alcohol use disorder; GHS-R1a; Ghrelin; Gut-Brain axis

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center