Format

Send to

Choose Destination
BMC Complement Altern Med. 2019 Feb 8;19(1):43. doi: 10.1186/s12906-019-2453-4.

Extracts from Sageretia thea reduce cell viability through inducing cyclin D1 proteasomal degradation and HO-1 expression in human colorectal cancer cells.

Author information

1
Department of Medicinal Plant Resources, Andong National University, 1375 Gyeongdong-ro, Andong, Gyeongsangbuk-do, 36729, Republic of Korea.
2
Forest Medicinal Resources Research Center, National Institute of Forest Science, Yongju, 36040, Republic of Korea.
3
Department of Medicinal Plant Resources, Andong National University, 1375 Gyeongdong-ro, Andong, Gyeongsangbuk-do, 36729, Republic of Korea. jjb0403@anu.ac.kr.
4
Agricultural Science and Technology Research Institute, Andong National University, Andong, 36729, Republic of Korea. jjb0403@anu.ac.kr.

Abstract

BACKGROUND:

Sageretia thea (S. thea) has been used as the medicinal plant for treating hepatitis and fevers in Korea and China. Recently, anticancer activity of S. thea has been reported, but the potential mechanism for the anti-cancer property of S. thea is still insufficient. Thus, we evaluated whether extracts from the leaves (STL) and branches (STB) of S. thea exert anticancer activity and elucidated its potential mechanism in SW480 cells.

METHODS:

MTT assay was performed for measuring cell viability. Western blot and RT-PCR were used for analyzing the level of protein and mRNA, respectively.

RESULTS:

Treatment of STL or STB decreased the cell viability and induced apoptosis in SW480 cells. Decreased level of cyclin D1 protein was observed in SW480 cells treated with STL or STB, but no change in cyclin D1 mRNA level was observed with the treatment of STL or STB. MG132 blocked downregulation of cyclin D1 protein by STL or STB. Thr286 phosphorylation of cyclin D1 by STL or STB occurred faster than downregulation of cyclin D1 protein in SW480 cells. When SW480 cells were transfected with T286A-cyclin D1, cyclin D1 degradation by STL or STB did not occur. Inhibition of GSK3β and cyclin D1 nuclear export attenuated STL or STB-mediated cyclin D1 degradation. In addition, STL or STB increased HO-1 expression, and the inhibition of HO-1 attenuated the induction of apoptosis by STL or STB. HO-1 expression by STL or STB resulted from Nrf2 activation through ROS-dependent p38 activation.

CONCLUSIONS:

These results indicate that STL or STB may induce GSK3β-dependent cyclin D1 degradation, and increase HO-1 expression through activating Nrf2 via ROS-dependent p38 activation, which resulted in the decrease of the viability in SW480 cells. These findings suggest that STL or STB may have great potential for the development of anti-cancer drug.

KEYWORDS:

Anticancer; Cell viability; Cyclin D1; Heme oxygenase-1; Human colorectal cancer; Sageretia thea

Supplemental Content

Full text links

Icon for BioMed Central Icon for PubMed Central
Loading ...
Support Center