Format

Send to

Choose Destination
Proc Natl Acad Sci U S A. 2019 Feb 19;116(8):3251-3255. doi: 10.1073/pnas.1815917116. Epub 2019 Feb 4.

Persistent metabolic youth in the aging female brain.

Author information

1
Neuroimaging Laboratories, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110; goyalm@wustl.edu.
2
Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110.
3
Neuroimaging Laboratories, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110.

Abstract

Sex differences influence brain morphology and physiology during both development and aging. Here we apply a machine learning algorithm to a multiparametric brain PET imaging dataset acquired in a cohort of 20- to 82-year-old, cognitively normal adults (n = 205) to define their metabolic brain age. We find that throughout the adult life span the female brain has a persistently lower metabolic brain age-relative to their chronological age-compared with the male brain. The persistence of relatively younger metabolic brain age in females throughout adulthood suggests that development might in part influence sex differences in brain aging. Our results also demonstrate that trajectories of natural brain aging vary significantly among individuals and provide a method to measure this.

KEYWORDS:

brain aging; brain metabolism; machine learning; neoteny; sex differences

PMID:
30718410
DOI:
10.1073/pnas.1815917116
Free full text

Supplemental Content

Full text links

Icon for HighWire
Loading ...
Support Center