Format

Send to

Choose Destination
J Immunol. 2019 Mar 15;202(6):1687-1692. doi: 10.4049/jimmunol.1801519. Epub 2019 Feb 4.

Efficacy of Chemokine Receptor Inhibition in Treating IL-36α-Induced Psoriasiform Inflammation.

Author information

1
ChemoCentryx, Inc., Mountain View, CA 94043 jcampbell@chemocentryx.com.
2
ChemoCentryx, Inc., Mountain View, CA 94043.

Abstract

Several types of psoriasiform dermatitis are associated with increased IL-36 cytokine activity in the skin. A rare, but severe, psoriasis-like disorder, generalized pustular psoriasis (GPP), is linked to loss-of-function mutations in the gene encoding IL-36RA, an important negative regulator of IL-36 signaling. To understand the effects of IL-36 dysregulation in a mouse model, we studied skin inflammation induced by intradermal injections of preactivated IL-36α. We found the immune cells infiltrating IL-36α-injected mouse skin to be of dramatically different composition than those infiltrating imiquimod-treated skin. The IL-36α-induced leukocyte population comprised nearly equal numbers of CD4+ αβ T cells, neutrophils, and inflammatory dendritic cells, whereas the imiquimod-induced population comprised γδ T cells and neutrophils. Ligands for chemokine receptors CCR6 and CXCR2 are increased in both GPP and IL-36α-treated skin, which led us to test an optimized small-molecule antagonist (CCX624) targeting CCR6 and CXCR2 in the IL-36α model. CCX624 significantly reduced the T cell, neutrophil, and inflammatory dendritic cell infiltrates and was more effective than saturating levels of an anti-IL-17RA mAb at reducing inflammatory symptoms. These findings put CCR6 and CXCR2 forward as novel targets for a mechanistically distinct therapeutic approach for inflammatory skin diseases involving dysregulated IL-36 signaling, such as GPP.

PMID:
30718298
DOI:
10.4049/jimmunol.1801519

Supplemental Content

Full text links

Icon for HighWire
Loading ...
Support Center