Send to

Choose Destination
Sci Rep. 2019 Jan 17;9(1):157. doi: 10.1038/s41598-018-35901-7.

Central place foragers select ocean surface convergent features despite differing foraging strategies.

Author information

University of Delaware, College of Earth, Ocean and Environment, 700 Pilottown Road, Lewes, DE, 19958, USA.
Rutgers, The State University of New Jersey, Department of Marine and Coastal Sciences, 71 Dudley Road, New Brunswick, NJ, 08901, USA.
Oregon State University, College of Earth, Ocean, and Atmospheric Sciences, 104 CEOAS Admin Bldg, Corvallis, OR, 97330, USA.
Polar Oceans Research Group, P.O. Box 368, Sheridan, MT, 59749, USA.
University of Alaska, Fairbanks, College of Fisheries and Ocean Sciences, 905 Koyukuk Dr. Suite 245 O'Neill Bldg., Fairbanks, AK, 99775-7220, USA.
The Jerusalem College of Technology, Computer Science Department, 21 Havaad Haleumi St., P.O. Box 16031, Jerusalem, 91160, Israel.
Scripps Institution of Oceanography, University of California, San Diego, Coastal Observing R&D Center, 9500 Gilman Drive #0214, La Jolla, CA, 92093, USA.
National Oceanography Centre, European Way, Southampton, SO14 3ZH, United Kingdom.


Discovering the predictors of foraging locations can be challenging, and is often the critical missing piece for interpreting the ecological significance of observed movement patterns of predators. This is especially true in dynamic coastal marine systems, where planktonic food resources are diffuse and must be either physically or biologically concentrated to support upper trophic levels. In the Western Antarctic Peninsula, recent climate change has created new foraging sympatry between Adélie (Pygoscelis adeliae) and gentoo (P. papua) penguins in a known biological hotspot near Palmer Deep canyon. We used this recent sympatry as an opportunity to investigate how dynamic local oceanographic features affect aspects of the foraging ecology of these two species. Simulated particle trajectories from measured surface currents were used to investigate the co-occurrence of convergent ocean features and penguin foraging locations. Adélie penguin diving activity was restricted to the upper mixed layer, while gentoo penguins often foraged much deeper than the mixed layer, suggesting that Adélie penguins may be more responsive to dynamic surface convergent features compared to gentoo penguins. We found that, despite large differences in diving and foraging behavior, both shallow-diving Adélie and deeper-diving gentoo penguins strongly selected for surface convergent features. Furthermore, there was no difference in selectivity for shallow- versus deep-diving gentoo penguins. Our results suggest that these two mesopredators are selecting surface convergent features, however, how these surface signals are related to subsurface prey fields is unknown.

Supplemental Content

Full text links

Icon for Nature Publishing Group Icon for PubMed Central
Loading ...
Support Center