On-chip Bragg grating waveguides and Fabry-Perot resonators for long-wave infrared operation up to 8.4 µm

Opt Express. 2018 Dec 24;26(26):34366-34372. doi: 10.1364/OE.26.034366.

Abstract

Taking advantage of unique molecular absorption lines in the mid-infrared fingerprint region and of the atmosphere transparency window (3-5 µm and 8-14 µm), mid-infrared silicon photonics has attracted more research activities with a great potential for applications in different areas, including spectroscopy, remote sensing, free-space communication and many others. However, the demonstration of resonant structures operating at long-wave infrared wavelengths still remains challenging. Here, we demonstrate Bragg grating-based Fabry-Perot resonators based on Ge-rich SiGe waveguides with broadband operation in the mid-infrared. Bragg grating waveguides are investigated first at different wavelengths from 5.4 µm up to 8.4 µm, showing a rejection band up to 21 dB. Integrated Fabry-Perot resonators are then demonstrated for the first time in the 8 µm-wavelength range, showing Q-factors as high as 2200. This first demonstration of integrated mid-infrared Fabry-Perot resonators paves the way towards resonance-enhanced sensing circuits and non-linear based devices at these wavelengths.