Influence of altitude on aero-optic imaging quality degradation of the hemispherical optical dome

Appl Opt. 2019 Jan 10;58(2):274-282. doi: 10.1364/AO.58.000274.

Abstract

We investigated the influence of altitude on aero-optic imaging quality degradation of the hemispherical optical dome. Boundary conditions for the aerodynamic heating effect of the optical dome were calculated by solving the Reynolds-averaged Navier-Stokes equations provided by FLUENT. The finite element model and the thermal-structure simulation results of the optical dome were obtained using ANSYS. The 3D nonuniform refractive index field of the optical dome was obtained according to the thermal-optical effect. The optical tracking method based on the fourth-order Runge-Kutta algorithm was adopted to simulate the optical transmission through the optical dome. The Strehl ratio (SR), encircled energy, distorted target images, and peak signal-to-noise ratio were presented for imaging quality evaluation. The variation rules of these imaging quality evaluation parameters were obtained in the altitude range of 0-45 km. The results showed that, in the same flight conditions, with the increase of altitude, peak signal-to-noise ratio (PSNR) of the distorted image, and SR result were increased, and radiuses of dispersion spots, including 80% energy, were decreased; therefore, the influence of aero-optics effect on imaging quality degradation was gradually weakened.