Format

Send to

Choose Destination
BMB Rep. 2019 Feb;52(2):113-118.

Regulation of post-translational modification in breast cancer treatment.

Author information

1
College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon 34134, Korea.

Abstract

The small ubiquitin-related modification molecule (SUMO), one of the post-translational modification molecules, is involved in a variety of cellular functions where it regulates protein activity and stability, transcription, and cell cycling. Modulation of protein SUMOylation or deSUMOylation modification has been associated with regulation of carcinogenesis in breast cancer. In the dynamic processes of SUMOylation and deSUMOylation in a variety of cancers, SUMO proteases (SENPs), reverse SUMOylation by isopeptidase activity and SENPs are mostly elevated, and are related to poor patient prognosis. Although underlying mechanisms have been suggested for how SENPs participate in breast cancer tumorigenesis, such as through regulation of target protein transactivation, cancer cell survival, cell cycle, or other post-translational modification-related machinery recruitment, the effect of SENP isoform-specific inhibitors on the progression of breast cancer have not been well evaluated. This review will introduce the functions of SENP1 and SENP2 and the underlying signaling pathways in breast cancer for use in discovery of new biomarkers for diagnosis or therapeutic targets for treatment. [BMB Reports 2019; 52(2): 113-118].

PMID:
30638182
Free full text

Supplemental Content

Full text links

Icon for Korean Society for Biochemistry and Molecular Biology
Loading ...
Support Center