Format

Send to

Choose Destination
Cancers (Basel). 2019 Jan 10;11(1). pii: E69. doi: 10.3390/cancers11010069.

Functional Assessment for Clinical Use of Serum-Free Adapted NK-92 Cells.

Author information

1
Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, 141 83 Stockholm, Sweden. Michael.Chrobok@ki.se.
2
Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, 141 83 Stockholm, Sweden. Carin.Dahlberg@ki.se.
3
NSU Cell Therapy Institute, Nova Southeastern University, Fort Lauderdale, FL 33314, USA. esayitoglu@nova.edu.
4
NSU Cell Therapy Institute, Nova Southeastern University, Fort Lauderdale, FL 33314, USA. vbeljanski@nova.edu.
5
Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, 141 83 Stockholm, Sweden. Hareth.Nahi@ki.se.
6
Haematology Centre, Karolinska University Hospital, 141 57 Huddinge, Sweden. Hareth.Nahi@ki.se.
7
Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, 141 83 Stockholm, Sweden. Mari.Gilljam@ki.se.
8
Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, 141 83 Stockholm, Sweden. birgittastellan@gmail.com.
9
Nanotechnology Research and Application Center, Sabanci University, 34956 Istanbul, Turkey. tolgasutlu@sabanciuniv.edu.
10
NSU Cell Therapy Institute, Nova Southeastern University, Fort Lauderdale, FL 33314, USA. adil.duru@nova.edu.
11
Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, 141 83 Stockholm, Sweden. evren.alici@ki.se.
12
NSU Cell Therapy Institute, Nova Southeastern University, Fort Lauderdale, FL 33314, USA. evren.alici@ki.se.
13
Haematology Centre, Karolinska University Hospital, 141 57 Huddinge, Sweden. evren.alici@ki.se.

Abstract

Natural killer (NK) cells stand out as promising candidates for cellular immunotherapy due to their capacity to kill malignant cells. However, the therapeutic use of NK cells is often dependent on cell expansion and activation with considerable amounts of serum and exogenous cytokines. We aimed to develop an expansion protocol for NK-92 cells in an effort to generate a cost-efficient, xeno-free, clinical grade manufactured master cell line for therapeutic applications. By making functional assays with NK-92 cells cultured under serum-free conditions (NK-92SF) and comparing to serum-supplemented NK-92 cells (NK-92S) we did not observe significant alterations in the viability, proliferation, receptor expression levels, or in perforin and granzyme levels. Interestingly, even though NK-92SF cells displayed decreased degranulation and cytotoxicity against tumor cells in vitro, the degranulation capacity was recovered after overnight incubation with 20% serum in the medium. Moreover, lentiviral vector-based genetic modification efficiency of NK-92SF cells was comparable with NK-92S cells. The application of similar strategies can be useful in reducing the costs of manufacturing cells for clinical use and can help us understand and implement strategies towards chemically defined expansion and genetic modification protocols.

KEYWORDS:

NK cell; NK-92; immunotherapy; serum-free

Supplemental Content

Full text links

Icon for Multidisciplinary Digital Publishing Institute (MDPI) Icon for PubMed Central
Loading ...
Support Center