Format

Send to

Choose Destination
Front Genet. 2018 Dec 12;9:654. doi: 10.3389/fgene.2018.00654. eCollection 2018.

Mono-ADP-Ribosylhydrolase MACROD2 Is Dispensable for Murine Responses to Metabolic and Genotoxic Insults.

Author information

1
International Clinical Research Center, St Anne's University Hospital, Brno, Czechia.
2
Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia.
3
Bioinformatics Unit, Casa Sollievo della Sofferenza (IRCCS), San Giovanni Rotondo, Italy.
4
Institute for Liver and Digestive Health, Division of Medicine, University College London, London, United Kingdom.

Abstract

ADP-ribosylation is an important post-translational protein modification that regulates diverse biological processes, controlled by dedicated transferases, and hydrolases. Disruption in the gene encoding for MACROD2, a mono-ADP-ribosylhydrolase, has been associated to the Kabuki syndrome, a pediatric congenital disorder characterized by facial anomalies, and mental retardation. Non-coding and structural mutations/variations in MACROD2 have been associated to psychiatric disorders, to obesity, and to cancer. Mechanistically, it has been recently shown that frequent deletions of the MACROD2 alter DNA repair and sensitivity to DNA damage, resulting in chromosome instability, and colorectal tumorigenesis. Whether MACROD2 deletion sensitizes the organism to metabolic and tumorigenic stressors, in absence of other genetic drivers, is unclear. As MACROD2 is ubiquitously expressed in mice, here we generated constitutively whole-body knock-out mice for MACROD2, starting from mouse embryonic stem (ES) cells deleted for the gene using the VelociGene® technology, belonging to the Knockout Mouse Project (KOMP) repository, a NIH initiative. MACROD2 knock-out mice were viable and healthy, indistinguishable from wild type littermates. High-fat diet administration induced obesity, and glucose/insulin intolerance in mice independent of MACROD2 gene deletion. Moreover, sub-lethal irradiation did not indicate a survival or lethality bias in MACROD2 knock-out mice compared to wild type littermates. Altogether, our data point against a sufficient role of MACROD2 deletion in aggravating high-fat induced obesity and DNA damage-associated lethality, in absence of other genetic drivers.

KEYWORDS:

MACROD2; genotoxic stress response; irradiation; knock out mouse model; metabolic stress; obesity

Supplemental Content

Full text links

Icon for Frontiers Media SA Icon for PubMed Central
Loading ...
Support Center