Format

Send to

Choose Destination
Drug Test Anal. 2019 Jan 4. doi: 10.1002/dta.2566. [Epub ahead of print]

Metabolic profiling of synthetic cannabinoid 5F-ADB by human liver microsome incubations and urine samples using high-resolution mass spectrometry.

Author information

1
Council of Forensic Medicine, Chemistry Department, 34196, Bahcelievler, Istanbul, Turkey.

Abstract

5F-ADB (methyl 2-{[1-(5-fluoropentyl)-1H-indazole-3-carbonyl] amino}-3,3-dimethylbutanoate) is a frequently abused new synthetic cannabinoid that has been sold since at least the end of 2014 on the drug market and has been classified as an illicit drug in most European countries, as well as Turkey, Japan, and the United States. In this study, the in vitro metabolism of 5F-ADB was investigated by using pooled human liver microsomes (HLMs) assay and liquid chromatography-high-resolution mass spectrometry (LC-HRMS). 5F-ADB (5 μmol/L) was incubated with HLMs for up to 3 hours, and the metabolites were identified using LC-HRMS and software-assisted data mining. The in vivo metabolism was investigated by the analysis of 30 authentic urine samples and was compared to the data received from the in vitro metabolism study. Less than 3.3% of the 5F-ADB parent compound remained after 1 hour of incubation, and no parent drug was detected after 3 hours. We identified 20 metabolites formed via ester hydrolysis, N-dealkylation, oxidative defluorination, hydroxylation, dehydrogenation, further oxidation to N-pentanoic acid and glucuronidation or a combination of these reactions in vitro. In 12 urine samples (n = 30), 5F-ADB was detected as the parent drug. Three of the identified main metabolites 5F-ADB carboxylic acid (M20), monohydroxypentyl-5F-ADB (M17), and carboxypentyl ADB carboxylic acid (M8) were suggested as suitable urinary markers. The screening of 8235 authentic urine samples for identified 5F-ADB metabolites in vitro resulted in 3135 cases of confirmed 5F-ADB consumption (38%).

KEYWORDS:

5F-ADB; 5F-MDMB-PINACA; authentic human urine specimen; in vitro metabolism; synthetic cannabinoid

PMID:
30610752
DOI:
10.1002/dta.2566

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center