Format

Send to

Choose Destination
Talanta. 2019 Mar 1;194:619-626. doi: 10.1016/j.talanta.2018.10.074. Epub 2018 Oct 25.

Stepwise targeted matching strategy from in vitro to in vivo based on ultra-high performance liquid chromatography tandem mass spectrometry technology to quickly identify and screen pharmacodynamic constituents.

Author information

1
State Key Laboratory of Electroanalytical Chemistry, National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; University of Science and Technology of China, Hefei 230026, China.
2
State Key Laboratory of Electroanalytical Chemistry, National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China. Electronic address: mslab20@ciac.ac.cn.
3
State Key Laboratory of Electroanalytical Chemistry, National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
4
State Key Laboratory of Electroanalytical Chemistry, National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China. Electronic address: liuzq@ciac.ac.cn.

Abstract

The study of in vivo pharmacodynamic constituents (PCs) of traditional Chinese medicine (TCM) is important for providing new clues for TCM applications in clinical therapies in modern medicine. However, detecting and identifying PCs from complex biological samples remain a challenge. In this study, a practical and novel stepwise targeted matching and longitudinal analysis strategy from in vitro to in vivo was developed. This strategy combined with ultra-high performance liquid chromatography tandem mass spectrometry was applied to quickly discover PCs in TCM. This approach was developed based on a core perception that all drugs taken orally might be transformed progressively and orderly from the intestinal tract, liver, and blood to the target organ. Based on this core perception, stepwise targeted matching was orderly and efficiently accomplished by multiple screening processes that were based on a stepwise enriched in-house library. Ginseng (Panax ginseng) was set as the example of herbal medicine for validating the reliability and availability of this approach. By applying this novel strategy to the stepwise screening of metabolites, we successfully identified 113 metabolites, among which 59 compounds were defined as prototypes. Based on the in vivo metabolites, network pharmacology analysis was applied to screen the PCs of ginseng and clarified the action mechanism of ginseng for the treatment of Alzheimer's disease (AD). A total of 27 herbal constituents and 64 related targets shared commonly by compounds and AD were integrated via target network pharmacology analysis. These results demonstrated that this original approach will greatly improve high-throughput screening of metabolites and PCs on AD. It also can explicate the mechanism of action of TCM. Furthermore, this strategy is practicable to identify metabolites and screen PCs in other herbal medicines.

KEYWORDS:

Ginseng; Pharmacodynamic constituents; Stepwise targeted matching strategy; Ultra–high performance liquid chromatography tandem mass spectrometry

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center